Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313364462> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4313364462 endingPage "1190" @default.
- W4313364462 startingPage "1186" @default.
- W4313364462 abstract "Artificial intelligence is used to diagnose various diseases of the oral cavity. In the field of clinical laboratory diagnostics, machine learning algorithms are used in the interpretation of complex biochemical data. The purpose of this study was to search for significant infectious-immunological clinical and laboratory data based on a machine learning algorithm for chronic periodontitis. To do this, 124 patients aged 40 to 70 years diagnosed with chronic periodontitis were examined by real-time PCR to detect the periodontal pocket DNA of human herpes viruses and bacterial periodontopathogenic microflora Fusobacterium nucleatum, Treponema denticola, Porphyromonas endodontalis etc., and Porphyromonas gingivalis. Matrix RNAs of proinflammatory cytokines and other markers of chronic inflammatory process were also studied: IL-1, IL-10, IL-18, TNFa, TLR4, GATA3, CD68. TNFa, IFNg, IL-1, IL-4, IL-6, IL-10, IL-18; VEGF were determined in a dentoalveolar fluid. Immune cells of the oral cavity were evaluated by analyzing level of CD3+, CD4+, CD8+, CD3+HLA-DR+, CD64+16+14, CD4+25+127+low, CD3+CD16+CD56+, CD3CD16+CD56+, CD14+, CD14+HLA-DR+, CD19+HLA-DR+, CD19+CD5+B27, CD19+CD5B27, CD19+CD5B27+ cells. Random forest machine learning was used to evaluate the data. A relationship between pathogenic microflora and modality of immune response was revealed. The proinflammatory component reflected in the expression of IL-1, TNFa, and IFNg mRNA, prevailed in the immune response against aggressive periodontal pathogens: T. denticola, F. nucleatum, etc. The random forest machine learning algorithm selected correlation ratios r 0.5 (both positive and negative) from a set of data for further analysis by the operator. The random forest machine learning model showed the following significant combinations of data by 10% with a teacher: VEGF, CD3+, CD14+HLA-DR, CD19+CD5CD27+, as well as TLR4, IL-1b, IL-10, TNFa, and IL-18 mRNA. The development of the applied random forest machine learning model with a teacher has already shown a 25% difference: P. endodontalis, GATA3, CD3+, CD14+, CD19+CD5CD27+, as well as TLR4, TNFa, IL-1b, IL-10, and IL-18 mRNA. The search for significant infectious-immunological clinical and laboratory data based on a machine learning algorithm for chronic periodontitis has shown the importance of proinflammatory cytokines, monocytes, T-lymphocytes and memory B-cells in the development of osteodestructive inflammatory process of mRNA to reveal non-evident causality factors." @default.
- W4313364462 created "2023-01-06" @default.
- W4313364462 creator A5034583419 @default.
- W4313364462 date "2022-12-30" @default.
- W4313364462 modified "2023-10-18" @default.
- W4313364462 title "Artificial intelligence in the immunodiagnostics of chronic periodontitis" @default.
- W4313364462 cites W2765483530 @default.
- W4313364462 cites W2800706558 @default.
- W4313364462 cites W2886435164 @default.
- W4313364462 cites W3025502643 @default.
- W4313364462 cites W3091885289 @default.
- W4313364462 cites W4224256263 @default.
- W4313364462 doi "https://doi.org/10.15789/2220-7619-aii-1999" @default.
- W4313364462 hasPublicationYear "2022" @default.
- W4313364462 type Work @default.
- W4313364462 citedByCount "0" @default.
- W4313364462 crossrefType "journal-article" @default.
- W4313364462 hasAuthorship W4313364462A5034583419 @default.
- W4313364462 hasBestOaLocation W43133644621 @default.
- W4313364462 hasConcept C126322002 @default.
- W4313364462 hasConcept C164027704 @default.
- W4313364462 hasConcept C203014093 @default.
- W4313364462 hasConcept C2776914184 @default.
- W4313364462 hasConcept C2777349128 @default.
- W4313364462 hasConcept C2777422794 @default.
- W4313364462 hasConcept C2778513237 @default.
- W4313364462 hasConcept C2779337755 @default.
- W4313364462 hasConcept C2780183776 @default.
- W4313364462 hasConcept C2780385504 @default.
- W4313364462 hasConcept C71924100 @default.
- W4313364462 hasConcept C86803240 @default.
- W4313364462 hasConcept C8891405 @default.
- W4313364462 hasConceptScore W4313364462C126322002 @default.
- W4313364462 hasConceptScore W4313364462C164027704 @default.
- W4313364462 hasConceptScore W4313364462C203014093 @default.
- W4313364462 hasConceptScore W4313364462C2776914184 @default.
- W4313364462 hasConceptScore W4313364462C2777349128 @default.
- W4313364462 hasConceptScore W4313364462C2777422794 @default.
- W4313364462 hasConceptScore W4313364462C2778513237 @default.
- W4313364462 hasConceptScore W4313364462C2779337755 @default.
- W4313364462 hasConceptScore W4313364462C2780183776 @default.
- W4313364462 hasConceptScore W4313364462C2780385504 @default.
- W4313364462 hasConceptScore W4313364462C71924100 @default.
- W4313364462 hasConceptScore W4313364462C86803240 @default.
- W4313364462 hasConceptScore W4313364462C8891405 @default.
- W4313364462 hasIssue "6" @default.
- W4313364462 hasLocation W43133644621 @default.
- W4313364462 hasOpenAccess W4313364462 @default.
- W4313364462 hasPrimaryLocation W43133644621 @default.
- W4313364462 hasRelatedWork W1986704776 @default.
- W4313364462 hasRelatedWork W2042539157 @default.
- W4313364462 hasRelatedWork W2045834460 @default.
- W4313364462 hasRelatedWork W2056161590 @default.
- W4313364462 hasRelatedWork W2134364123 @default.
- W4313364462 hasRelatedWork W2231156903 @default.
- W4313364462 hasRelatedWork W2767311297 @default.
- W4313364462 hasRelatedWork W2789903403 @default.
- W4313364462 hasRelatedWork W4207031420 @default.
- W4313364462 hasRelatedWork W4313364462 @default.
- W4313364462 hasVolume "12" @default.
- W4313364462 isParatext "false" @default.
- W4313364462 isRetracted "false" @default.
- W4313364462 workType "article" @default.