Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313364496> ?p ?o ?g. }
- W4313364496 abstract "Obesity is a serious public health problem. Existing research has shown a strong association between obesity and an individual's diet and physical activity. If we extend such an association to the neighborhood level, information about the diet and physical activity of the residents of a neighborhood may improve the estimate of neighborhood-level obesity prevalence and help identify the neighborhoods that are more likely to suffer from obesity. However, it is challenging to measure neighborhood-level diet and physical activity through surveys and interviews, especially for a large geographic area.We propose a method for deriving neighborhood-level diet and physical activity measurements from anonymized mobile phone location data, and examine the extent to which the derived measurements can enhance obesity estimation, in addition to the socioeconomic and demographic variables typically used in the literature. We conduct case studies in three different U.S. cities, which are New York City, Los Angeles, and Buffalo, using anonymized mobile phone location data from the company SafeGraph. We employ five different statistical and machine learning models to test the potential enhancement brought by the derived measurements for obesity estimation.We find that it is feasible to derive neighborhood-level diet and physical activity measurements from anonymized mobile phone location data. The derived measurements provide only a small enhancement for obesity estimation, compared with using a comprehensive set of socioeconomic and demographic variables. However, using these derived measurements alone can achieve a moderate accuracy for obesity estimation, and they may provide a stronger enhancement when comprehensive socioeconomic and demographic data are not available (e.g., in some developing countries). From a methodological perspective, spatially explicit models overall perform better than non-spatial models for neighborhood-level obesity estimation.Our proposed method can be used for deriving neighborhood-level diet and physical activity measurements from anonymized mobile phone data. The derived measurements can enhance obesity estimation, and can be especially useful when comprehensive socioeconomic and demographic data are not available. In addition, these derived measurements can be used to study obesity-related health behaviors, such as visit frequency of neighborhood residents to fast-food restaurants, and to identify primary places contributing to obesity-related issues." @default.
- W4313364496 created "2023-01-06" @default.
- W4313364496 creator A5005042481 @default.
- W4313364496 creator A5046784854 @default.
- W4313364496 creator A5070467313 @default.
- W4313364496 creator A5086990547 @default.
- W4313364496 creator A5090991498 @default.
- W4313364496 date "2022-12-30" @default.
- W4313364496 modified "2023-10-09" @default.
- W4313364496 title "Deriving neighborhood-level diet and physical activity measurements from anonymized mobile phone location data for enhancing obesity estimation" @default.
- W4313364496 cites W1770177672 @default.
- W4313364496 cites W1869298778 @default.
- W4313364496 cites W1981459575 @default.
- W4313364496 cites W1982300822 @default.
- W4313364496 cites W2000499105 @default.
- W4313364496 cites W200152053 @default.
- W4313364496 cites W2008098975 @default.
- W4313364496 cites W2043843256 @default.
- W4313364496 cites W2046927668 @default.
- W4313364496 cites W2051661289 @default.
- W4313364496 cites W2056284729 @default.
- W4313364496 cites W2058212218 @default.
- W4313364496 cites W2070918418 @default.
- W4313364496 cites W2073378182 @default.
- W4313364496 cites W2079086589 @default.
- W4313364496 cites W2086825163 @default.
- W4313364496 cites W2091435714 @default.
- W4313364496 cites W2103386360 @default.
- W4313364496 cites W2113318243 @default.
- W4313364496 cites W2119283716 @default.
- W4313364496 cites W2125442251 @default.
- W4313364496 cites W2139236032 @default.
- W4313364496 cites W2145146696 @default.
- W4313364496 cites W2154580043 @default.
- W4313364496 cites W2167457547 @default.
- W4313364496 cites W2172021088 @default.
- W4313364496 cites W2189099953 @default.
- W4313364496 cites W2205718226 @default.
- W4313364496 cites W2283647635 @default.
- W4313364496 cites W2343167329 @default.
- W4313364496 cites W2574519416 @default.
- W4313364496 cites W2603405442 @default.
- W4313364496 cites W2708165930 @default.
- W4313364496 cites W2778399375 @default.
- W4313364496 cites W2791646523 @default.
- W4313364496 cites W2885069941 @default.
- W4313364496 cites W2895171996 @default.
- W4313364496 cites W2909947596 @default.
- W4313364496 cites W2912855477 @default.
- W4313364496 cites W2919115771 @default.
- W4313364496 cites W2930389570 @default.
- W4313364496 cites W2943411648 @default.
- W4313364496 cites W2947363587 @default.
- W4313364496 cites W2948613401 @default.
- W4313364496 cites W2980421096 @default.
- W4313364496 cites W2995212654 @default.
- W4313364496 cites W3010682058 @default.
- W4313364496 cites W3021083477 @default.
- W4313364496 cites W3025691921 @default.
- W4313364496 cites W3031542987 @default.
- W4313364496 cites W3039314135 @default.
- W4313364496 cites W3046751713 @default.
- W4313364496 cites W3082092587 @default.
- W4313364496 cites W3083560775 @default.
- W4313364496 cites W3094704830 @default.
- W4313364496 cites W3096319654 @default.
- W4313364496 cites W3114365730 @default.
- W4313364496 cites W3115102688 @default.
- W4313364496 cites W3127752519 @default.
- W4313364496 cites W3133505302 @default.
- W4313364496 cites W3164766304 @default.
- W4313364496 cites W3188035648 @default.
- W4313364496 cites W3194197976 @default.
- W4313364496 cites W3195015218 @default.
- W4313364496 cites W4200301493 @default.
- W4313364496 cites W4200355014 @default.
- W4313364496 cites W4226365946 @default.
- W4313364496 cites W4281293351 @default.
- W4313364496 cites W4288076238 @default.
- W4313364496 doi "https://doi.org/10.1186/s12942-022-00321-4" @default.
- W4313364496 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36585658" @default.
- W4313364496 hasPublicationYear "2022" @default.
- W4313364496 type Work @default.
- W4313364496 citedByCount "1" @default.
- W4313364496 countsByYear W43133644962023 @default.
- W4313364496 crossrefType "journal-article" @default.
- W4313364496 hasAuthorship W4313364496A5005042481 @default.
- W4313364496 hasAuthorship W4313364496A5046784854 @default.
- W4313364496 hasAuthorship W4313364496A5070467313 @default.
- W4313364496 hasAuthorship W4313364496A5086990547 @default.
- W4313364496 hasAuthorship W4313364496A5090991498 @default.
- W4313364496 hasBestOaLocation W43133644961 @default.
- W4313364496 hasConcept C105795698 @default.
- W4313364496 hasConcept C126322002 @default.
- W4313364496 hasConcept C127413603 @default.
- W4313364496 hasConcept C138816342 @default.
- W4313364496 hasConcept C147077947 @default.
- W4313364496 hasConcept C159110408 @default.
- W4313364496 hasConcept C201995342 @default.
- W4313364496 hasConcept C205649164 @default.