Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313365053> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4313365053 endingPage "095440622211413" @default.
- W4313365053 startingPage "095440622211413" @default.
- W4313365053 abstract "With machines in manufacturing industry being automated, complex and intelligent, its monitoring systems are equipped with more and more smart sensors. How to extract useful features from great volume of multi-sensor data become a great challenge to the field of fault diagnosis. To overcome such challenge, an improved convolutional autoencoder neural network (CANN) is proposed to fuse and extract effective features of the color images formed by multi-sensor data in this paper. Firstly, the vibration signals of different channels are jointly transformed into color images. Secondly, an improved CANN is constructed by introducing special convolution kernels and residual connection for multi-sensor data fusion and feature extraction. Finally, the encoder part of CANN is connected with the softmax classifier for fault diagnosis. Two datasets collected from Wind Power Test-Bed and Industrial Blower Fan System are used to fully validate the effectiveness of proposed CANN. The results show that it can effectively fuse multi-sensor data and mine the discriminative features. Furthermore, compared with some related state-of-art methods, the CANN obtains higher diagnostic accuracy, especially for less labeled data." @default.
- W4313365053 created "2023-01-06" @default.
- W4313365053 creator A5006822602 @default.
- W4313365053 creator A5019791875 @default.
- W4313365053 creator A5086461425 @default.
- W4313365053 date "2022-12-30" @default.
- W4313365053 modified "2023-10-01" @default.
- W4313365053 title "Convolutional autoencoder neural network for fault diagnosis with multi-sensor data" @default.
- W4313365053 cites W2001068433 @default.
- W4313365053 cites W2069648060 @default.
- W4313365053 cites W2274246713 @default.
- W4313365053 cites W2603304445 @default.
- W4313365053 cites W2771734292 @default.
- W4313365053 cites W2905685260 @default.
- W4313365053 cites W2906256948 @default.
- W4313365053 cites W2961876792 @default.
- W4313365053 cites W2994928929 @default.
- W4313365053 cites W2999516673 @default.
- W4313365053 cites W3015362700 @default.
- W4313365053 cites W3025870744 @default.
- W4313365053 cites W3034504400 @default.
- W4313365053 cites W3155955687 @default.
- W4313365053 cites W3171003452 @default.
- W4313365053 cites W3184504011 @default.
- W4313365053 cites W3186002894 @default.
- W4313365053 cites W3186163945 @default.
- W4313365053 cites W3192540077 @default.
- W4313365053 cites W3197058104 @default.
- W4313365053 cites W4200375835 @default.
- W4313365053 cites W4205567159 @default.
- W4313365053 cites W4207016703 @default.
- W4313365053 doi "https://doi.org/10.1177/09544062221141336" @default.
- W4313365053 hasPublicationYear "2022" @default.
- W4313365053 type Work @default.
- W4313365053 citedByCount "1" @default.
- W4313365053 countsByYear W43133650532023 @default.
- W4313365053 crossrefType "journal-article" @default.
- W4313365053 hasAuthorship W4313365053A5006822602 @default.
- W4313365053 hasAuthorship W4313365053A5019791875 @default.
- W4313365053 hasAuthorship W4313365053A5086461425 @default.
- W4313365053 hasConcept C101738243 @default.
- W4313365053 hasConcept C119599485 @default.
- W4313365053 hasConcept C124101348 @default.
- W4313365053 hasConcept C127313418 @default.
- W4313365053 hasConcept C127413603 @default.
- W4313365053 hasConcept C141353440 @default.
- W4313365053 hasConcept C153180895 @default.
- W4313365053 hasConcept C154945302 @default.
- W4313365053 hasConcept C165205528 @default.
- W4313365053 hasConcept C175551986 @default.
- W4313365053 hasConcept C188441871 @default.
- W4313365053 hasConcept C41008148 @default.
- W4313365053 hasConcept C50644808 @default.
- W4313365053 hasConcept C52622490 @default.
- W4313365053 hasConcept C81363708 @default.
- W4313365053 hasConcept C95623464 @default.
- W4313365053 hasConcept C97931131 @default.
- W4313365053 hasConceptScore W4313365053C101738243 @default.
- W4313365053 hasConceptScore W4313365053C119599485 @default.
- W4313365053 hasConceptScore W4313365053C124101348 @default.
- W4313365053 hasConceptScore W4313365053C127313418 @default.
- W4313365053 hasConceptScore W4313365053C127413603 @default.
- W4313365053 hasConceptScore W4313365053C141353440 @default.
- W4313365053 hasConceptScore W4313365053C153180895 @default.
- W4313365053 hasConceptScore W4313365053C154945302 @default.
- W4313365053 hasConceptScore W4313365053C165205528 @default.
- W4313365053 hasConceptScore W4313365053C175551986 @default.
- W4313365053 hasConceptScore W4313365053C188441871 @default.
- W4313365053 hasConceptScore W4313365053C41008148 @default.
- W4313365053 hasConceptScore W4313365053C50644808 @default.
- W4313365053 hasConceptScore W4313365053C52622490 @default.
- W4313365053 hasConceptScore W4313365053C81363708 @default.
- W4313365053 hasConceptScore W4313365053C95623464 @default.
- W4313365053 hasConceptScore W4313365053C97931131 @default.
- W4313365053 hasFunder F4320321001 @default.
- W4313365053 hasLocation W43133650531 @default.
- W4313365053 hasOpenAccess W4313365053 @default.
- W4313365053 hasPrimaryLocation W43133650531 @default.
- W4313365053 hasRelatedWork W2285052147 @default.
- W4313365053 hasRelatedWork W2406522397 @default.
- W4313365053 hasRelatedWork W2739417350 @default.
- W4313365053 hasRelatedWork W2743258233 @default.
- W4313365053 hasRelatedWork W2771515600 @default.
- W4313365053 hasRelatedWork W2772780115 @default.
- W4313365053 hasRelatedWork W2900180889 @default.
- W4313365053 hasRelatedWork W2977314777 @default.
- W4313365053 hasRelatedWork W2998168123 @default.
- W4313365053 hasRelatedWork W4287995534 @default.
- W4313365053 isParatext "false" @default.
- W4313365053 isRetracted "false" @default.
- W4313365053 workType "article" @default.