Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313365092> ?p ?o ?g. }
- W4313365092 endingPage "19" @default.
- W4313365092 startingPage "19" @default.
- W4313365092 abstract "Purpose: Descemet membrane endothelial keratoplasty (DMEK) is the preferred method for treating corneal endothelial dysfunction, such as Fuchs endothelial corneal dystrophy (FECD). The surgical indication is based on the patients’ symptoms and the presence of corneal edema. We developed an automated tool based on deep learning to detect edema in corneal optical coherence tomography images. This study aimed to evaluate this approach in edema detection before Descemet membrane endothelial keratoplasty surgery, for patients with or without FECD. Methods: We used our previously described model allowing to classify each pixel in the corneal optical coherence tomography images as “normal” or “edema.” We included 1992 images of normal and preoperative edematous corneas. We calculated the edema fraction (EF), defined as the ratio between the number of pixels labeled as “edema,” and those representing the cornea for each patient. Differential central corneal thickness (DCCT), defined as the difference in central corneal thickness before and 6 months after surgery, was used to quantify preoperative edema. AUC of EF for the edema detection was calculated for Several DCCT thresholds and a value of 20 µm was selected to define significant edema as it provided the highest area under the curve value. Results: The area under the curve of the receiver operating characteristic curve for EF for the detection of 20 µm of DCCT was 0.97 for all patients, 0.96 for Fuchs and normal only and 0.99 for non-FECD and normal patients. The optimal EF threshold was 0.143 for all patients and patients with FECD. Conclusions: Our model is capable of objectively detecting minimal corneal edema before Descemet membrane endothelial keratoplasty surgery. Translational Relevance: Deep learning can help to interpret optical coherence tomography scans and aid the surgeon in decision-making." @default.
- W4313365092 created "2023-01-06" @default.
- W4313365092 creator A5003423166 @default.
- W4313365092 creator A5006905385 @default.
- W4313365092 creator A5013506840 @default.
- W4313365092 creator A5033451757 @default.
- W4313365092 creator A5083185661 @default.
- W4313365092 creator A5086836314 @default.
- W4313365092 date "2022-12-30" @default.
- W4313365092 modified "2023-09-27" @default.
- W4313365092 title "Deep Learning Model for the Detection of Corneal Edema Before Descemet Membrane Endothelial Keratoplasty on Optical Coherence Tomography Images" @default.
- W4313365092 cites W184641614 @default.
- W4313365092 cites W1976991800 @default.
- W4313365092 cites W1979018680 @default.
- W4313365092 cites W2020576973 @default.
- W4313365092 cites W2047221511 @default.
- W4313365092 cites W2083395396 @default.
- W4313365092 cites W2106921579 @default.
- W4313365092 cites W2125805484 @default.
- W4313365092 cites W2334478822 @default.
- W4313365092 cites W2469369919 @default.
- W4313365092 cites W2557738935 @default.
- W4313365092 cites W2592929672 @default.
- W4313365092 cites W2798033178 @default.
- W4313365092 cites W2883372159 @default.
- W4313365092 cites W2886173263 @default.
- W4313365092 cites W2888500008 @default.
- W4313365092 cites W2890754095 @default.
- W4313365092 cites W2897020177 @default.
- W4313365092 cites W2900083515 @default.
- W4313365092 cites W2904857403 @default.
- W4313365092 cites W2908621325 @default.
- W4313365092 cites W2922812483 @default.
- W4313365092 cites W2951710360 @default.
- W4313365092 cites W2968841875 @default.
- W4313365092 cites W2969554168 @default.
- W4313365092 cites W2974242060 @default.
- W4313365092 cites W2976673896 @default.
- W4313365092 cites W3007455487 @default.
- W4313365092 cites W3013712174 @default.
- W4313365092 cites W3034308373 @default.
- W4313365092 cites W3082413267 @default.
- W4313365092 cites W3091900474 @default.
- W4313365092 cites W3120122048 @default.
- W4313365092 cites W3129215289 @default.
- W4313365092 cites W3211335053 @default.
- W4313365092 cites W4200422062 @default.
- W4313365092 cites W4242720114 @default.
- W4313365092 cites W4285698150 @default.
- W4313365092 cites W49681136 @default.
- W4313365092 cites W80619539 @default.
- W4313365092 doi "https://doi.org/10.1167/tvst.11.12.19" @default.
- W4313365092 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36583911" @default.
- W4313365092 hasPublicationYear "2022" @default.
- W4313365092 type Work @default.
- W4313365092 citedByCount "1" @default.
- W4313365092 countsByYear W43133650922023 @default.
- W4313365092 crossrefType "journal-article" @default.
- W4313365092 hasAuthorship W4313365092A5003423166 @default.
- W4313365092 hasAuthorship W4313365092A5006905385 @default.
- W4313365092 hasAuthorship W4313365092A5013506840 @default.
- W4313365092 hasAuthorship W4313365092A5033451757 @default.
- W4313365092 hasAuthorship W4313365092A5083185661 @default.
- W4313365092 hasAuthorship W4313365092A5086836314 @default.
- W4313365092 hasBestOaLocation W43133650921 @default.
- W4313365092 hasConcept C118487528 @default.
- W4313365092 hasConcept C126322002 @default.
- W4313365092 hasConcept C141071460 @default.
- W4313365092 hasConcept C2776882836 @default.
- W4313365092 hasConcept C2778257484 @default.
- W4313365092 hasConcept C2778818243 @default.
- W4313365092 hasConcept C2780347916 @default.
- W4313365092 hasConcept C2780886150 @default.
- W4313365092 hasConcept C58471807 @default.
- W4313365092 hasConcept C71924100 @default.
- W4313365092 hasConceptScore W4313365092C118487528 @default.
- W4313365092 hasConceptScore W4313365092C126322002 @default.
- W4313365092 hasConceptScore W4313365092C141071460 @default.
- W4313365092 hasConceptScore W4313365092C2776882836 @default.
- W4313365092 hasConceptScore W4313365092C2778257484 @default.
- W4313365092 hasConceptScore W4313365092C2778818243 @default.
- W4313365092 hasConceptScore W4313365092C2780347916 @default.
- W4313365092 hasConceptScore W4313365092C2780886150 @default.
- W4313365092 hasConceptScore W4313365092C58471807 @default.
- W4313365092 hasConceptScore W4313365092C71924100 @default.
- W4313365092 hasIssue "12" @default.
- W4313365092 hasLocation W43133650921 @default.
- W4313365092 hasLocation W43133650922 @default.
- W4313365092 hasLocation W43133650923 @default.
- W4313365092 hasOpenAccess W4313365092 @default.
- W4313365092 hasPrimaryLocation W43133650921 @default.
- W4313365092 hasRelatedWork W1027066458 @default.
- W4313365092 hasRelatedWork W2008864034 @default.
- W4313365092 hasRelatedWork W2015659872 @default.
- W4313365092 hasRelatedWork W2038616380 @default.
- W4313365092 hasRelatedWork W2064827486 @default.
- W4313365092 hasRelatedWork W2096649391 @default.
- W4313365092 hasRelatedWork W2144977558 @default.