Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313366856> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313366856 endingPage "2888" @default.
- W4313366856 startingPage "2876" @default.
- W4313366856 abstract "Artificial neural networks (ANNs)-based objective functions such as costs and weights of reinforced concrete (RC) frames with four-by-four bays and four floors are optimized simultaneously based on big datasets of 330,000 designs according to ACI 318-19, whereas corresponding design parameters, which minimize objective functions, are also obtained. The Pareto frontier verified by big datasets shows reductions up to 44.983% and 33.111% in costs and weights, respectively, compared with probable designs based on averages of 688 (0.1%) best designs among 688,000 samples. Optimized designs’ meeting requirements imposed by codes and architects are achieved using the ANN-based Hong–Lagrange algorithm in which complex analytical objective functions are replaced by ANN-based objective functions. ANN is formulated to provide 32 forward outputs based on 18 forward inputs to minimize or maximize objective functions, such as costs and weights as a function of 18 input parameters. When good training qualities are achieved, objective functions with equality and inequality constraints are implemented in the proposed method, which determines optimal design parameters for building with accuracies and robustness equivalent to derivation-based approaches, which are hard to obtain using metaheuristic methods. The proposed AI-based auto-designs perform optimization where design variables are produced automatically while optimizing design targets." @default.
- W4313366856 created "2023-01-06" @default.
- W4313366856 creator A5025409379 @default.
- W4313366856 creator A5035614978 @default.
- W4313366856 date "2023-01-08" @default.
- W4313366856 modified "2023-10-18" @default.
- W4313366856 title "An AI-based auto-design for optimizing RC frames using the ANN-based Hong–Lagrange algorithm" @default.
- W4313366856 cites W1975063684 @default.
- W4313366856 cites W1998990987 @default.
- W4313366856 cites W2001641117 @default.
- W4313366856 cites W2001648389 @default.
- W4313366856 cites W2010990033 @default.
- W4313366856 cites W2020970418 @default.
- W4313366856 cites W2039568841 @default.
- W4313366856 cites W2057875848 @default.
- W4313366856 cites W2068224133 @default.
- W4313366856 cites W2095393667 @default.
- W4313366856 cites W2110373411 @default.
- W4313366856 cites W2179823001 @default.
- W4313366856 cites W2586606789 @default.
- W4313366856 cites W2707074415 @default.
- W4313366856 cites W2760757974 @default.
- W4313366856 cites W2801667966 @default.
- W4313366856 cites W2975408825 @default.
- W4313366856 cites W2980005233 @default.
- W4313366856 cites W3001116333 @default.
- W4313366856 cites W3017070807 @default.
- W4313366856 cites W3197387234 @default.
- W4313366856 cites W3212616679 @default.
- W4313366856 cites W3217745223 @default.
- W4313366856 doi "https://doi.org/10.1080/13467581.2022.2163174" @default.
- W4313366856 hasPublicationYear "2023" @default.
- W4313366856 type Work @default.
- W4313366856 citedByCount "1" @default.
- W4313366856 countsByYear W43133668562023 @default.
- W4313366856 crossrefType "journal-article" @default.
- W4313366856 hasAuthorship W4313366856A5025409379 @default.
- W4313366856 hasAuthorship W4313366856A5035614978 @default.
- W4313366856 hasBestOaLocation W43133668561 @default.
- W4313366856 hasConcept C104317684 @default.
- W4313366856 hasConcept C11413529 @default.
- W4313366856 hasConcept C126255220 @default.
- W4313366856 hasConcept C137635306 @default.
- W4313366856 hasConcept C154945302 @default.
- W4313366856 hasConcept C185592680 @default.
- W4313366856 hasConcept C33923547 @default.
- W4313366856 hasConcept C41008148 @default.
- W4313366856 hasConcept C50644808 @default.
- W4313366856 hasConcept C55493867 @default.
- W4313366856 hasConcept C63479239 @default.
- W4313366856 hasConcept C68781425 @default.
- W4313366856 hasConcept C73684929 @default.
- W4313366856 hasConceptScore W4313366856C104317684 @default.
- W4313366856 hasConceptScore W4313366856C11413529 @default.
- W4313366856 hasConceptScore W4313366856C126255220 @default.
- W4313366856 hasConceptScore W4313366856C137635306 @default.
- W4313366856 hasConceptScore W4313366856C154945302 @default.
- W4313366856 hasConceptScore W4313366856C185592680 @default.
- W4313366856 hasConceptScore W4313366856C33923547 @default.
- W4313366856 hasConceptScore W4313366856C41008148 @default.
- W4313366856 hasConceptScore W4313366856C50644808 @default.
- W4313366856 hasConceptScore W4313366856C55493867 @default.
- W4313366856 hasConceptScore W4313366856C63479239 @default.
- W4313366856 hasConceptScore W4313366856C68781425 @default.
- W4313366856 hasConceptScore W4313366856C73684929 @default.
- W4313366856 hasIssue "5" @default.
- W4313366856 hasLocation W43133668561 @default.
- W4313366856 hasOpenAccess W4313366856 @default.
- W4313366856 hasPrimaryLocation W43133668561 @default.
- W4313366856 hasRelatedWork W1550055091 @default.
- W4313366856 hasRelatedWork W1588199609 @default.
- W4313366856 hasRelatedWork W1971520370 @default.
- W4313366856 hasRelatedWork W2001591765 @default.
- W4313366856 hasRelatedWork W2073147994 @default.
- W4313366856 hasRelatedWork W2090178682 @default.
- W4313366856 hasRelatedWork W2384474142 @default.
- W4313366856 hasRelatedWork W2744462909 @default.
- W4313366856 hasRelatedWork W3083133203 @default.
- W4313366856 hasRelatedWork W4241467429 @default.
- W4313366856 hasVolume "22" @default.
- W4313366856 isParatext "false" @default.
- W4313366856 isRetracted "false" @default.
- W4313366856 workType "article" @default.