Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313366864> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4313366864 endingPage "34" @default.
- W4313366864 startingPage "32" @default.
- W4313366864 abstract "We provide a comprehensive reply to the comment written by Chiara Angelini and Federico Ricci-Tersenghi [arXiv:2206.13211] and argue that the comment singles out one particular non-representative example problem, entirely focusing on the maximum independent set (MIS) on sparse graphs, for which greedy algorithms are expected to perform well. Conversely, we highlight the broader algorithmic development underlying our original work, and (within our original framework) provide additional numerical results showing sizable improvements over our original results, thereby refuting the comment's performance statements. We also provide results showing run-time scaling superior to the results provided by Angelini and Ricci-Tersenghi. Furthermore, we show that the proposed set of random d-regular graphs does not provide a universal set of benchmark instances, nor do greedy heuristics provide a universal algorithmic baseline. Finally, we argue that the internal (parallel) anatomy of graph neural networks is very different from the (sequential) nature of greedy algorithms and emphasize that graph neural networks have demonstrated their potential for superior scalability compared to existing heuristics such as parallel tempering. We conclude by discussing the conceptual novelty of our work and outline some potential extensions." @default.
- W4313366864 created "2023-01-06" @default.
- W4313366864 creator A5017295904 @default.
- W4313366864 creator A5053684051 @default.
- W4313366864 creator A5067554216 @default.
- W4313366864 date "2022-12-30" @default.
- W4313366864 modified "2023-09-30" @default.
- W4313366864 title "Reply to: Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set" @default.
- W4313366864 cites W2082345630 @default.
- W4313366864 cites W3159953606 @default.
- W4313366864 cites W3181036294 @default.
- W4313366864 cites W4309830359 @default.
- W4313366864 cites W4313366927 @default.
- W4313366864 doi "https://doi.org/10.1038/s42256-022-00590-5" @default.
- W4313366864 hasPublicationYear "2022" @default.
- W4313366864 type Work @default.
- W4313366864 citedByCount "0" @default.
- W4313366864 crossrefType "journal-article" @default.
- W4313366864 hasAuthorship W4313366864A5017295904 @default.
- W4313366864 hasAuthorship W4313366864A5053684051 @default.
- W4313366864 hasAuthorship W4313366864A5067554216 @default.
- W4313366864 hasBestOaLocation W43133668642 @default.
- W4313366864 hasConcept C11413529 @default.
- W4313366864 hasConcept C122818955 @default.
- W4313366864 hasConcept C126255220 @default.
- W4313366864 hasConcept C127705205 @default.
- W4313366864 hasConcept C132525143 @default.
- W4313366864 hasConcept C138885662 @default.
- W4313366864 hasConcept C154945302 @default.
- W4313366864 hasConcept C177264268 @default.
- W4313366864 hasConcept C199360897 @default.
- W4313366864 hasConcept C27206212 @default.
- W4313366864 hasConcept C2778738651 @default.
- W4313366864 hasConcept C33923547 @default.
- W4313366864 hasConcept C41008148 @default.
- W4313366864 hasConcept C48044578 @default.
- W4313366864 hasConcept C51823790 @default.
- W4313366864 hasConcept C77088390 @default.
- W4313366864 hasConcept C80444323 @default.
- W4313366864 hasConceptScore W4313366864C11413529 @default.
- W4313366864 hasConceptScore W4313366864C122818955 @default.
- W4313366864 hasConceptScore W4313366864C126255220 @default.
- W4313366864 hasConceptScore W4313366864C127705205 @default.
- W4313366864 hasConceptScore W4313366864C132525143 @default.
- W4313366864 hasConceptScore W4313366864C138885662 @default.
- W4313366864 hasConceptScore W4313366864C154945302 @default.
- W4313366864 hasConceptScore W4313366864C177264268 @default.
- W4313366864 hasConceptScore W4313366864C199360897 @default.
- W4313366864 hasConceptScore W4313366864C27206212 @default.
- W4313366864 hasConceptScore W4313366864C2778738651 @default.
- W4313366864 hasConceptScore W4313366864C33923547 @default.
- W4313366864 hasConceptScore W4313366864C41008148 @default.
- W4313366864 hasConceptScore W4313366864C48044578 @default.
- W4313366864 hasConceptScore W4313366864C51823790 @default.
- W4313366864 hasConceptScore W4313366864C77088390 @default.
- W4313366864 hasConceptScore W4313366864C80444323 @default.
- W4313366864 hasIssue "1" @default.
- W4313366864 hasLocation W43133668641 @default.
- W4313366864 hasLocation W43133668642 @default.
- W4313366864 hasLocation W43133668643 @default.
- W4313366864 hasOpenAccess W4313366864 @default.
- W4313366864 hasPrimaryLocation W43133668641 @default.
- W4313366864 hasRelatedWork W1552360664 @default.
- W4313366864 hasRelatedWork W1884730587 @default.
- W4313366864 hasRelatedWork W1984069252 @default.
- W4313366864 hasRelatedWork W2013650843 @default.
- W4313366864 hasRelatedWork W2022413371 @default.
- W4313366864 hasRelatedWork W2119531722 @default.
- W4313366864 hasRelatedWork W2144629587 @default.
- W4313366864 hasRelatedWork W2155712597 @default.
- W4313366864 hasRelatedWork W3121358922 @default.
- W4313366864 hasRelatedWork W90771745 @default.
- W4313366864 hasVolume "5" @default.
- W4313366864 isParatext "false" @default.
- W4313366864 isRetracted "false" @default.
- W4313366864 workType "article" @default.