Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313366877> ?p ?o ?g. }
- W4313366877 endingPage "20" @default.
- W4313366877 startingPage "1" @default.
- W4313366877 abstract "Dynamic modern healthcare systems rely heavily on the contributions of computer scientists. The diagnosis process is a team effort involving many people: patients, their families, healthcare providers, researchers, and policymakers. Computer technology plays a crucial role in supporting this effort by providing a number of essential services to all of these groups. In the early stages of many diseases, a diagnosis can be made automatically using a computer-aided system, with some degree of certainty. This paper presents a hybrid optimal deep learning-based model for tuberculosis disease recognition using MRI images. Several deep learning models are combined to extract the most relevant features from MRI images. In particular, we establish a combination between vision transformer (ViTs) and Efficient-Net models in order to maximize classification accuracy. We conducted experiments to investigate the accuracy of the proposed model using the Shenzhen and Montgomery data set, and found that it yielded substantially more accurate and better results than the state of-the-art works." @default.
- W4313366877 created "2023-01-06" @default.
- W4313366877 creator A5003008708 @default.
- W4313366877 creator A5073408697 @default.
- W4313366877 creator A5075789222 @default.
- W4313366877 date "2022-12-30" @default.
- W4313366877 modified "2023-09-30" @default.
- W4313366877 title "ViT-TB: Ensemble Learning Based ViT Model for Tuberculosis Recognition" @default.
- W4313366877 cites W1980658573 @default.
- W4313366877 cites W2143514833 @default.
- W4313366877 cites W2310042802 @default.
- W4313366877 cites W2508821345 @default.
- W4313366877 cites W2608231518 @default.
- W4313366877 cites W2618530766 @default.
- W4313366877 cites W2745075853 @default.
- W4313366877 cites W2792454083 @default.
- W4313366877 cites W2794167658 @default.
- W4313366877 cites W2810767764 @default.
- W4313366877 cites W2895344120 @default.
- W4313366877 cites W2900683726 @default.
- W4313366877 cites W2908763778 @default.
- W4313366877 cites W2909474014 @default.
- W4313366877 cites W2912529512 @default.
- W4313366877 cites W2939788146 @default.
- W4313366877 cites W2954996726 @default.
- W4313366877 cites W2963480753 @default.
- W4313366877 cites W2966645774 @default.
- W4313366877 cites W2967018031 @default.
- W4313366877 cites W2996739437 @default.
- W4313366877 cites W2998641003 @default.
- W4313366877 cites W3024263255 @default.
- W4313366877 cites W3046473234 @default.
- W4313366877 cites W3051230477 @default.
- W4313366877 cites W3080174621 @default.
- W4313366877 cites W3080937139 @default.
- W4313366877 cites W3096609285 @default.
- W4313366877 cites W3124375766 @default.
- W4313366877 cites W3135682442 @default.
- W4313366877 cites W3194020089 @default.
- W4313366877 cites W3194296141 @default.
- W4313366877 cites W3217239252 @default.
- W4313366877 cites W4221026921 @default.
- W4313366877 cites W4226313565 @default.
- W4313366877 cites W4232097126 @default.
- W4313366877 doi "https://doi.org/10.1080/01969722.2022.2162736" @default.
- W4313366877 hasPublicationYear "2022" @default.
- W4313366877 type Work @default.
- W4313366877 citedByCount "4" @default.
- W4313366877 countsByYear W43133668772023 @default.
- W4313366877 crossrefType "journal-article" @default.
- W4313366877 hasAuthorship W4313366877A5003008708 @default.
- W4313366877 hasAuthorship W4313366877A5073408697 @default.
- W4313366877 hasAuthorship W4313366877A5075789222 @default.
- W4313366877 hasConcept C108583219 @default.
- W4313366877 hasConcept C111919701 @default.
- W4313366877 hasConcept C119857082 @default.
- W4313366877 hasConcept C121332964 @default.
- W4313366877 hasConcept C154945302 @default.
- W4313366877 hasConcept C160735492 @default.
- W4313366877 hasConcept C162324750 @default.
- W4313366877 hasConcept C165801399 @default.
- W4313366877 hasConcept C177264268 @default.
- W4313366877 hasConcept C199360897 @default.
- W4313366877 hasConcept C41008148 @default.
- W4313366877 hasConcept C50522688 @default.
- W4313366877 hasConcept C62520636 @default.
- W4313366877 hasConcept C66322947 @default.
- W4313366877 hasConcept C98045186 @default.
- W4313366877 hasConceptScore W4313366877C108583219 @default.
- W4313366877 hasConceptScore W4313366877C111919701 @default.
- W4313366877 hasConceptScore W4313366877C119857082 @default.
- W4313366877 hasConceptScore W4313366877C121332964 @default.
- W4313366877 hasConceptScore W4313366877C154945302 @default.
- W4313366877 hasConceptScore W4313366877C160735492 @default.
- W4313366877 hasConceptScore W4313366877C162324750 @default.
- W4313366877 hasConceptScore W4313366877C165801399 @default.
- W4313366877 hasConceptScore W4313366877C177264268 @default.
- W4313366877 hasConceptScore W4313366877C199360897 @default.
- W4313366877 hasConceptScore W4313366877C41008148 @default.
- W4313366877 hasConceptScore W4313366877C50522688 @default.
- W4313366877 hasConceptScore W4313366877C62520636 @default.
- W4313366877 hasConceptScore W4313366877C66322947 @default.
- W4313366877 hasConceptScore W4313366877C98045186 @default.
- W4313366877 hasLocation W43133668771 @default.
- W4313366877 hasOpenAccess W4313366877 @default.
- W4313366877 hasPrimaryLocation W43133668771 @default.
- W4313366877 hasRelatedWork W3014300295 @default.
- W4313366877 hasRelatedWork W3164822677 @default.
- W4313366877 hasRelatedWork W4223943233 @default.
- W4313366877 hasRelatedWork W4225161397 @default.
- W4313366877 hasRelatedWork W4250304930 @default.
- W4313366877 hasRelatedWork W4312200629 @default.
- W4313366877 hasRelatedWork W4360585206 @default.
- W4313366877 hasRelatedWork W4364306694 @default.
- W4313366877 hasRelatedWork W4380075502 @default.
- W4313366877 hasRelatedWork W4380086463 @default.
- W4313366877 isParatext "false" @default.
- W4313366877 isRetracted "false" @default.