Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313366884> ?p ?o ?g. }
- W4313366884 endingPage "114" @default.
- W4313366884 startingPage "101" @default.
- W4313366884 abstract "Abstract The electronic band structure and crystal structure are the two complementary identifiers of solid-state materials. Although convenient instruments and reconstruction algorithms have made large, empirical, crystal structure databases possible, extracting the quasiparticle dispersion (closely related to band structure) from photoemission band mapping data is currently limited by the available computational methods. To cope with the growing size and scale of photoemission data, here we develop a pipeline including probabilistic machine learning and the associated data processing, optimization and evaluation methods for band-structure reconstruction, leveraging theoretical calculations. The pipeline reconstructs all 14 valence bands of a semiconductor and shows excellent performance on benchmarks and other materials datasets. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales, while realizing a path towards integration with materials science databases. Our approach illustrates the potential of combining machine learning and domain knowledge for scalable feature extraction in multidimensional data." @default.
- W4313366884 created "2023-01-06" @default.
- W4313366884 creator A5006380429 @default.
- W4313366884 creator A5018488407 @default.
- W4313366884 creator A5028103689 @default.
- W4313366884 creator A5030120299 @default.
- W4313366884 creator A5030727292 @default.
- W4313366884 creator A5034653994 @default.
- W4313366884 creator A5044005697 @default.
- W4313366884 creator A5046414081 @default.
- W4313366884 creator A5052667018 @default.
- W4313366884 creator A5055272851 @default.
- W4313366884 creator A5069236653 @default.
- W4313366884 creator A5069751628 @default.
- W4313366884 date "2022-12-30" @default.
- W4313366884 modified "2023-10-15" @default.
- W4313366884 title "A machine learning route between band mapping and band structure" @default.
- W4313366884 cites W1494192115 @default.
- W4313366884 cites W1505185714 @default.
- W4313366884 cites W1582252665 @default.
- W4313366884 cites W1614843501 @default.
- W4313366884 cites W1981368803 @default.
- W4313366884 cites W1994683528 @default.
- W4313366884 cites W2006213427 @default.
- W4313366884 cites W2008867996 @default.
- W4313366884 cites W2016168218 @default.
- W4313366884 cites W2019969660 @default.
- W4313366884 cites W2025373183 @default.
- W4313366884 cites W2026907619 @default.
- W4313366884 cites W2037575569 @default.
- W4313366884 cites W2045565734 @default.
- W4313366884 cites W2049079467 @default.
- W4313366884 cites W2052214141 @default.
- W4313366884 cites W2061105079 @default.
- W4313366884 cites W2066578284 @default.
- W4313366884 cites W2085093563 @default.
- W4313366884 cites W2093736486 @default.
- W4313366884 cites W2108556791 @default.
- W4313366884 cites W2111959010 @default.
- W4313366884 cites W2114358147 @default.
- W4313366884 cites W2118376687 @default.
- W4313366884 cites W2137880050 @default.
- W4313366884 cites W2148424525 @default.
- W4313366884 cites W2149037369 @default.
- W4313366884 cites W2178187190 @default.
- W4313366884 cites W2336331191 @default.
- W4313366884 cites W2480129962 @default.
- W4313366884 cites W2560224915 @default.
- W4313366884 cites W2561891629 @default.
- W4313366884 cites W2586058225 @default.
- W4313366884 cites W2588377074 @default.
- W4313366884 cites W2592027196 @default.
- W4313366884 cites W2596335862 @default.
- W4313366884 cites W2613585099 @default.
- W4313366884 cites W2703298506 @default.
- W4313366884 cites W2751024669 @default.
- W4313366884 cites W2787951070 @default.
- W4313366884 cites W2894000394 @default.
- W4313366884 cites W2907408330 @default.
- W4313366884 cites W2943261621 @default.
- W4313366884 cites W2953540383 @default.
- W4313366884 cites W3004310419 @default.
- W4313366884 cites W3012602841 @default.
- W4313366884 cites W3082133905 @default.
- W4313366884 cites W3098900879 @default.
- W4313366884 cites W3100423923 @default.
- W4313366884 cites W3104002959 @default.
- W4313366884 cites W3104526704 @default.
- W4313366884 cites W3104567510 @default.
- W4313366884 cites W3106744816 @default.
- W4313366884 cites W3111493431 @default.
- W4313366884 cites W3119113486 @default.
- W4313366884 cites W3123778788 @default.
- W4313366884 cites W3123854369 @default.
- W4313366884 cites W3154838446 @default.
- W4313366884 cites W3182399364 @default.
- W4313366884 cites W3183645185 @default.
- W4313366884 cites W4200545284 @default.
- W4313366884 cites W4225106311 @default.
- W4313366884 cites W4285390013 @default.
- W4313366884 cites W4300854326 @default.
- W4313366884 doi "https://doi.org/10.1038/s43588-022-00382-2" @default.
- W4313366884 hasPublicationYear "2022" @default.
- W4313366884 type Work @default.
- W4313366884 citedByCount "0" @default.
- W4313366884 crossrefType "journal-article" @default.
- W4313366884 hasAuthorship W4313366884A5006380429 @default.
- W4313366884 hasAuthorship W4313366884A5018488407 @default.
- W4313366884 hasAuthorship W4313366884A5028103689 @default.
- W4313366884 hasAuthorship W4313366884A5030120299 @default.
- W4313366884 hasAuthorship W4313366884A5030727292 @default.
- W4313366884 hasAuthorship W4313366884A5034653994 @default.
- W4313366884 hasAuthorship W4313366884A5044005697 @default.
- W4313366884 hasAuthorship W4313366884A5046414081 @default.
- W4313366884 hasAuthorship W4313366884A5052667018 @default.
- W4313366884 hasAuthorship W4313366884A5055272851 @default.
- W4313366884 hasAuthorship W4313366884A5069236653 @default.
- W4313366884 hasAuthorship W4313366884A5069751628 @default.