Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313366972> ?p ?o ?g. }
- W4313366972 abstract "The current paper implements a methodology for automatically detecting vehicle maneuvers from vehicle telemetry data under naturalistic driving settings. Previous approaches have treated vehicle maneuver detection as a classification problem, although both time series segmentation and classification are required since input telemetry data are continuous. Our objective is to develop an end-to-end pipeline for the frame-by-frame annotation of naturalistic driving studies videos into various driving events including stop and lane-keeping events, lane changes, left-right turning movements, and horizontal curve maneuvers. To address the time series segmentation problem, the study developed an energy-maximization algorithm (EMA) capable of extracting driving events of varying durations and frequencies from continuous signal data. To reduce overfitting and false alarm rates, heuristic algorithms were used to classify events with highly variable patterns such as stops and lane-keeping. To classify segmented driving events, four machine-learning models were implemented, and their accuracy and transferability were assessed over multiple data sources. The duration of events extracted by EMA was comparable to actual events, with accuracies ranging from 59.30% (left lane change) to 85.60% (lane-keeping). Additionally, the overall accuracy of the 1D-convolutional neural network model was 98.99%, followed by the long-short-term-memory model at 97.75%, then the random forest model at 97.71%, and the support vector machine model at 97.65%. These model accuracies were consistent across different data sources. The study concludes that implementing a segmentation-classification pipeline significantly improves both the accuracy of driver maneuver detection and the transferability of shallow and deep ML models across diverse datasets." @default.
- W4313366972 created "2023-01-06" @default.
- W4313366972 creator A5004337702 @default.
- W4313366972 creator A5005333881 @default.
- W4313366972 creator A5035406249 @default.
- W4313366972 creator A5039722899 @default.
- W4313366972 creator A5069415522 @default.
- W4313366972 creator A5089838047 @default.
- W4313366972 date "2023-03-01" @default.
- W4313366972 modified "2023-10-01" @default.
- W4313366972 title "Driver Maneuver Detection and Analysis Using Time Series Segmentation and Classification" @default.
- W4313366972 cites W1965678663 @default.
- W4313366972 cites W1980026261 @default.
- W4313366972 cites W2012849708 @default.
- W4313366972 cites W2016654760 @default.
- W4313366972 cites W2030713743 @default.
- W4313366972 cites W2054835536 @default.
- W4313366972 cites W2055556996 @default.
- W4313366972 cites W2097612790 @default.
- W4313366972 cites W2101255815 @default.
- W4313366972 cites W2127417984 @default.
- W4313366972 cites W2134604026 @default.
- W4313366972 cites W2146404773 @default.
- W4313366972 cites W2160121217 @default.
- W4313366972 cites W2162966954 @default.
- W4313366972 cites W2171800225 @default.
- W4313366972 cites W2269387402 @default.
- W4313366972 cites W2401341187 @default.
- W4313366972 cites W2496457208 @default.
- W4313366972 cites W2539417147 @default.
- W4313366972 cites W2604187552 @default.
- W4313366972 cites W2605751614 @default.
- W4313366972 cites W2689602764 @default.
- W4313366972 cites W2734936567 @default.
- W4313366972 cites W2786239628 @default.
- W4313366972 cites W2903537695 @default.
- W4313366972 cites W2911964244 @default.
- W4313366972 cites W2914088316 @default.
- W4313366972 cites W2916651910 @default.
- W4313366972 cites W2959716684 @default.
- W4313366972 cites W2993442636 @default.
- W4313366972 cites W3015848421 @default.
- W4313366972 cites W3024784050 @default.
- W4313366972 cites W3158797545 @default.
- W4313366972 cites W3203532242 @default.
- W4313366972 cites W4230850676 @default.
- W4313366972 cites W4239510810 @default.
- W4313366972 doi "https://doi.org/10.1061/jtepbs.teeng-7312" @default.
- W4313366972 hasPublicationYear "2023" @default.
- W4313366972 type Work @default.
- W4313366972 citedByCount "2" @default.
- W4313366972 countsByYear W43133669722023 @default.
- W4313366972 crossrefType "journal-article" @default.
- W4313366972 hasAuthorship W4313366972A5004337702 @default.
- W4313366972 hasAuthorship W4313366972A5005333881 @default.
- W4313366972 hasAuthorship W4313366972A5035406249 @default.
- W4313366972 hasAuthorship W4313366972A5039722899 @default.
- W4313366972 hasAuthorship W4313366972A5069415522 @default.
- W4313366972 hasAuthorship W4313366972A5089838047 @default.
- W4313366972 hasBestOaLocation W43133669722 @default.
- W4313366972 hasConcept C12267149 @default.
- W4313366972 hasConcept C126042441 @default.
- W4313366972 hasConcept C153180895 @default.
- W4313366972 hasConcept C154945302 @default.
- W4313366972 hasConcept C199360897 @default.
- W4313366972 hasConcept C22019652 @default.
- W4313366972 hasConcept C23224414 @default.
- W4313366972 hasConcept C2776836416 @default.
- W4313366972 hasConcept C41008148 @default.
- W4313366972 hasConcept C43521106 @default.
- W4313366972 hasConcept C50644808 @default.
- W4313366972 hasConcept C76155785 @default.
- W4313366972 hasConcept C81363708 @default.
- W4313366972 hasConcept C89600930 @default.
- W4313366972 hasConceptScore W4313366972C12267149 @default.
- W4313366972 hasConceptScore W4313366972C126042441 @default.
- W4313366972 hasConceptScore W4313366972C153180895 @default.
- W4313366972 hasConceptScore W4313366972C154945302 @default.
- W4313366972 hasConceptScore W4313366972C199360897 @default.
- W4313366972 hasConceptScore W4313366972C22019652 @default.
- W4313366972 hasConceptScore W4313366972C23224414 @default.
- W4313366972 hasConceptScore W4313366972C2776836416 @default.
- W4313366972 hasConceptScore W4313366972C41008148 @default.
- W4313366972 hasConceptScore W4313366972C43521106 @default.
- W4313366972 hasConceptScore W4313366972C50644808 @default.
- W4313366972 hasConceptScore W4313366972C76155785 @default.
- W4313366972 hasConceptScore W4313366972C81363708 @default.
- W4313366972 hasConceptScore W4313366972C89600930 @default.
- W4313366972 hasIssue "3" @default.
- W4313366972 hasLocation W43133669721 @default.
- W4313366972 hasLocation W43133669722 @default.
- W4313366972 hasOpenAccess W4313366972 @default.
- W4313366972 hasPrimaryLocation W43133669721 @default.
- W4313366972 hasRelatedWork W1996541855 @default.
- W4313366972 hasRelatedWork W2120476639 @default.
- W4313366972 hasRelatedWork W2358941527 @default.
- W4313366972 hasRelatedWork W2767651786 @default.
- W4313366972 hasRelatedWork W2996933976 @default.
- W4313366972 hasRelatedWork W3081496756 @default.
- W4313366972 hasRelatedWork W3208266890 @default.