Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313366973> ?p ?o ?g. }
- W4313366973 endingPage "1072" @default.
- W4313366973 startingPage "1056" @default.
- W4313366973 abstract "ABSTRACT Type Ia supernovae (SNe Ia), standardizable candles that allow tracing the expansion history of the Universe, are instrumental in constraining cosmological parameters, particularly dark energy. State-of-the-art likelihood-based analyses scale poorly to future large data sets, are limited to simplified probabilistic descriptions, and must explicitly sample a high-dimensional latent posterior to infer the few parameters of interest, which makes them inefficient. Marginal likelihood-free inference, on the other hand, is based on forward simulations of data, and thus can fully account for complicated redshift uncertainties, contamination from non-SN Ia sources, selection effects, and a realistic instrumental model. All latent parameters, including instrumental and survey-related ones, per object and population-level properties, are implicitly marginalized, while the cosmological parameters of interest are inferred directly. As a proof of concept, we apply truncated marginal neural ratio estimation (TMNRE), a form of marginal likelihood-free inference, to bahamas, a Bayesian hierarchical model for salt parameters. We verify that TMNRE produces unbiased and precise posteriors for cosmological parameters from up to 100 000 SNe Ia. With minimal additional effort, we train a network to infer simultaneously the ${sim}100, 000$ latent parameters of the supernovae (e.g. absolute brightnesses). In addition, we describe and apply a procedure that utilizes local amortization of the inference to convert the approximate Bayesian posteriors into frequentist confidence regions with exact coverage. Finally, we discuss the planned improvements to the model that are enabled by using a likelihood-free inference framework, like selection effects and non-Ia contamination." @default.
- W4313366973 created "2023-01-06" @default.
- W4313366973 creator A5021706010 @default.
- W4313366973 creator A5048451185 @default.
- W4313366973 creator A5049262683 @default.
- W4313366973 date "2022-12-30" @default.
- W4313366973 modified "2023-09-30" @default.
- W4313366973 title "SICRET: Supernova Ia Cosmology with truncated marginal neural Ratio EsTimation" @default.
- W4313366973 cites W1564947197 @default.
- W4313366973 cites W1567468361 @default.
- W4313366973 cites W1722024342 @default.
- W4313366973 cites W1807499209 @default.
- W4313366973 cites W1853767801 @default.
- W4313366973 cites W1871368792 @default.
- W4313366973 cites W1897518387 @default.
- W4313366973 cites W1969221502 @default.
- W4313366973 cites W1975948265 @default.
- W4313366973 cites W1979861468 @default.
- W4313366973 cites W2001290456 @default.
- W4313366973 cites W2027747340 @default.
- W4313366973 cites W2029343094 @default.
- W4313366973 cites W2029867595 @default.
- W4313366973 cites W2066372684 @default.
- W4313366973 cites W2068938350 @default.
- W4313366973 cites W2071187610 @default.
- W4313366973 cites W2073163146 @default.
- W4313366973 cites W2073832139 @default.
- W4313366973 cites W2092502491 @default.
- W4313366973 cites W2092674054 @default.
- W4313366973 cites W2093740961 @default.
- W4313366973 cites W2129817039 @default.
- W4313366973 cites W2156989793 @default.
- W4313366973 cites W2157138706 @default.
- W4313366973 cites W2167619573 @default.
- W4313366973 cites W2280436996 @default.
- W4313366973 cites W2321025370 @default.
- W4313366973 cites W2405011949 @default.
- W4313366973 cites W2537863638 @default.
- W4313366973 cites W2611245299 @default.
- W4313366973 cites W2624682472 @default.
- W4313366973 cites W2763117186 @default.
- W4313366973 cites W2767351845 @default.
- W4313366973 cites W2895152177 @default.
- W4313366973 cites W2897710795 @default.
- W4313366973 cites W2897917559 @default.
- W4313366973 cites W2899904699 @default.
- W4313366973 cites W2952861391 @default.
- W4313366973 cites W2953402524 @default.
- W4313366973 cites W2994821158 @default.
- W4313366973 cites W2994912343 @default.
- W4313366973 cites W3017483760 @default.
- W4313366973 cites W3031514878 @default.
- W4313366973 cites W3091349141 @default.
- W4313366973 cites W3096471732 @default.
- W4313366973 cites W3098006044 @default.
- W4313366973 cites W3098188186 @default.
- W4313366973 cites W3098283750 @default.
- W4313366973 cites W3098407486 @default.
- W4313366973 cites W3098899650 @default.
- W4313366973 cites W3099712623 @default.
- W4313366973 cites W3101509247 @default.
- W4313366973 cites W3101847915 @default.
- W4313366973 cites W3102014803 @default.
- W4313366973 cites W3102604030 @default.
- W4313366973 cites W3102838867 @default.
- W4313366973 cites W3103159079 @default.
- W4313366973 cites W3103235332 @default.
- W4313366973 cites W3103856467 @default.
- W4313366973 cites W3104062568 @default.
- W4313366973 cites W3104567932 @default.
- W4313366973 cites W3110565054 @default.
- W4313366973 cites W3137828748 @default.
- W4313366973 cites W3139687472 @default.
- W4313366973 cites W3152905009 @default.
- W4313366973 cites W3164224166 @default.
- W4313366973 cites W3169092501 @default.
- W4313366973 cites W4205929954 @default.
- W4313366973 cites W4282961335 @default.
- W4313366973 cites W4285156104 @default.
- W4313366973 cites W4285403843 @default.
- W4313366973 cites W4300633279 @default.
- W4313366973 cites W4306850861 @default.
- W4313366973 doi "https://doi.org/10.1093/mnras/stac3785" @default.
- W4313366973 hasPublicationYear "2022" @default.
- W4313366973 type Work @default.
- W4313366973 citedByCount "5" @default.
- W4313366973 countsByYear W43133669732023 @default.
- W4313366973 crossrefType "journal-article" @default.
- W4313366973 hasAuthorship W4313366973A5021706010 @default.
- W4313366973 hasAuthorship W4313366973A5048451185 @default.
- W4313366973 hasAuthorship W4313366973A5049262683 @default.
- W4313366973 hasBestOaLocation W43133669732 @default.
- W4313366973 hasConcept C105795698 @default.
- W4313366973 hasConcept C107673813 @default.
- W4313366973 hasConcept C121332964 @default.
- W4313366973 hasConcept C127592171 @default.
- W4313366973 hasConcept C154945302 @default.
- W4313366973 hasConcept C160234255 @default.