Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313367248> ?p ?o ?g. }
- W4313367248 endingPage "213" @default.
- W4313367248 startingPage "203" @default.
- W4313367248 abstract "Accelerating the development of π-conjugated molecules for applications such as energy generation and storage, catalysis, sensing, pharmaceuticals, and (semi)conducting technologies requires rapid and accurate evaluation of the electronic, redox, or optical properties. While high-throughput computational screening has proven to be a tremendous aid in this regard, machine learning (ML) and other data-driven methods can further enable orders of magnitude reduction in time while at the same time providing dramatic increases in the chemical space that is explored. However, the lack of benchmark datasets containing the electronic, redox, and optical properties that characterize the diverse, known chemical space of organic π-conjugated molecules limits ML model development. Here, we present a curated dataset containing 25k molecules with density functional theory (DFT) and time-dependent DFT (TDDFT) evaluated properties that include frontier molecular orbitals, ionization energies, relaxation energies, and low-lying optical excitation energies. Using the dataset, we train a hierarchy of ML models, ranging from classical models such as ridge regression to sophisticated graph neural networks, with molecular SMILES representation as input. We observe that graph neural networks augmented with contextual information allow for significantly better predictions across a wide array of properties. Our best-performing models also provide an uncertainty quantification for the predictions. To democratize access to the data and trained models, an interactive web platform has been developed and deployed." @default.
- W4313367248 created "2023-01-06" @default.
- W4313367248 creator A5010429017 @default.
- W4313367248 creator A5011704511 @default.
- W4313367248 creator A5022300740 @default.
- W4313367248 creator A5048135667 @default.
- W4313367248 creator A5056847387 @default.
- W4313367248 creator A5058469228 @default.
- W4313367248 date "2023-01-01" @default.
- W4313367248 modified "2023-10-16" @default.
- W4313367248 title "Electronic, redox, and optical property prediction of organic π-conjugated molecules through a hierarchy of machine learning approaches" @default.
- W4313367248 cites W1766546609 @default.
- W4313367248 cites W1970651561 @default.
- W4313367248 cites W1975147762 @default.
- W4313367248 cites W1986760892 @default.
- W4313367248 cites W1988037271 @default.
- W4313367248 cites W1988091937 @default.
- W4313367248 cites W1990270507 @default.
- W4313367248 cites W2046588282 @default.
- W4313367248 cites W2060745946 @default.
- W4313367248 cites W2080635178 @default.
- W4313367248 cites W2082278668 @default.
- W4313367248 cites W2098658310 @default.
- W4313367248 cites W2114704115 @default.
- W4313367248 cites W2121170859 @default.
- W4313367248 cites W2134164499 @default.
- W4313367248 cites W2152681556 @default.
- W4313367248 cites W2317821468 @default.
- W4313367248 cites W2464811097 @default.
- W4313367248 cites W2522266514 @default.
- W4313367248 cites W2527540728 @default.
- W4313367248 cites W2613900957 @default.
- W4313367248 cites W2726184500 @default.
- W4313367248 cites W2753588101 @default.
- W4313367248 cites W2753962198 @default.
- W4313367248 cites W2768768629 @default.
- W4313367248 cites W2789787743 @default.
- W4313367248 cites W2790808809 @default.
- W4313367248 cites W2793852959 @default.
- W4313367248 cites W2796279597 @default.
- W4313367248 cites W2807691742 @default.
- W4313367248 cites W2903564615 @default.
- W4313367248 cites W2928958014 @default.
- W4313367248 cites W2937307539 @default.
- W4313367248 cites W2948272487 @default.
- W4313367248 cites W2953033603 @default.
- W4313367248 cites W2954167186 @default.
- W4313367248 cites W2966357564 @default.
- W4313367248 cites W2980467839 @default.
- W4313367248 cites W2980897490 @default.
- W4313367248 cites W2981554790 @default.
- W4313367248 cites W3005809558 @default.
- W4313367248 cites W3007663973 @default.
- W4313367248 cites W3037327750 @default.
- W4313367248 cites W3102100346 @default.
- W4313367248 cites W3105562665 @default.
- W4313367248 cites W3138798301 @default.
- W4313367248 cites W3138974848 @default.
- W4313367248 cites W3139419649 @default.
- W4313367248 cites W3157523261 @default.
- W4313367248 cites W3185456481 @default.
- W4313367248 cites W3187501257 @default.
- W4313367248 cites W3192643845 @default.
- W4313367248 cites W3202227570 @default.
- W4313367248 cites W4213245140 @default.
- W4313367248 cites W4226048858 @default.
- W4313367248 cites W4293232267 @default.
- W4313367248 doi "https://doi.org/10.1039/d2sc04676h" @default.
- W4313367248 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36605753" @default.
- W4313367248 hasPublicationYear "2023" @default.
- W4313367248 type Work @default.
- W4313367248 citedByCount "4" @default.
- W4313367248 countsByYear W43133672482023 @default.
- W4313367248 crossrefType "journal-article" @default.
- W4313367248 hasAuthorship W4313367248A5010429017 @default.
- W4313367248 hasAuthorship W4313367248A5011704511 @default.
- W4313367248 hasAuthorship W4313367248A5022300740 @default.
- W4313367248 hasAuthorship W4313367248A5048135667 @default.
- W4313367248 hasAuthorship W4313367248A5056847387 @default.
- W4313367248 hasAuthorship W4313367248A5058469228 @default.
- W4313367248 hasBestOaLocation W43133672481 @default.
- W4313367248 hasConcept C119857082 @default.
- W4313367248 hasConcept C13280743 @default.
- W4313367248 hasConcept C147597530 @default.
- W4313367248 hasConcept C152365726 @default.
- W4313367248 hasConcept C154945302 @default.
- W4313367248 hasConcept C185592680 @default.
- W4313367248 hasConcept C185798385 @default.
- W4313367248 hasConcept C205649164 @default.
- W4313367248 hasConcept C20853536 @default.
- W4313367248 hasConcept C41008148 @default.
- W4313367248 hasConcept C55493867 @default.
- W4313367248 hasConcept C74187038 @default.
- W4313367248 hasConcept C99726746 @default.
- W4313367248 hasConceptScore W4313367248C119857082 @default.
- W4313367248 hasConceptScore W4313367248C13280743 @default.
- W4313367248 hasConceptScore W4313367248C147597530 @default.
- W4313367248 hasConceptScore W4313367248C152365726 @default.