Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313367483> ?p ?o ?g. }
- W4313367483 endingPage "107409" @default.
- W4313367483 startingPage "107409" @default.
- W4313367483 abstract "Phase unwrapping is an important part of fringe projection profilometry(FPP), which greatly affects the efficiency and accuracy of reconstruction. Phase unwrapping methods with deep learning achieve single-frequency phase unwrapping without additional cameras. However, existing methods have low accuracy in the real complex scene, and can not process data whose resolution is greater than the resolution of training data. This paper introduces a neural convolutional network named as VRNet which achieves accurate and single-frequency phase unwrapping without extra cameras. VRNet with encoder-decoder structure gets multi-scale feature maps through feeding the wrapped phase map into the encoder, then fuses the feature maps recursively by using the proposed feature fusion module to accomplish precise prediction. In order to further improve the accuracy of phase unwrapping, this paper presents a phase correction method based on the distribution characteristics of the absolute phase. The method divides the cross-section of the absolute phase map into several curves and identifies a misclassified pixel by comparing its absolute phase value with the value of neighboring curves. In contrast to existing methods, the method is row-independent and does not require segmentation of image. Moreover, this paper accomplishes the prediction of high-resolution data through the phase stitching strategy and fine-tuning the phase correction method. Extensive experiments show that the proposed method is able to achieve high-accuracy and single-frequency phase unwrapping in real scenes which consist of at least one complex object, and is also effective for wrapped phase maps with a resolution larger than the training data." @default.
- W4313367483 created "2023-01-06" @default.
- W4313367483 creator A5049019196 @default.
- W4313367483 creator A5054352845 @default.
- W4313367483 creator A5056208795 @default.
- W4313367483 creator A5075144456 @default.
- W4313367483 creator A5086152877 @default.
- W4313367483 date "2023-03-01" @default.
- W4313367483 modified "2023-10-11" @default.
- W4313367483 title "Single-frequency and accurate phase unwrapping method using deep learning" @default.
- W4313367483 cites W2005113098 @default.
- W4313367483 cites W2013587578 @default.
- W4313367483 cites W2021424791 @default.
- W4313367483 cites W2032397366 @default.
- W4313367483 cites W2044230059 @default.
- W4313367483 cites W2055365204 @default.
- W4313367483 cites W2068069165 @default.
- W4313367483 cites W2345939069 @default.
- W4313367483 cites W2592929672 @default.
- W4313367483 cites W2622826443 @default.
- W4313367483 cites W2725771727 @default.
- W4313367483 cites W2886535361 @default.
- W4313367483 cites W2900139389 @default.
- W4313367483 cites W2919115771 @default.
- W4313367483 cites W2944321146 @default.
- W4313367483 cites W2944537797 @default.
- W4313367483 cites W2944779716 @default.
- W4313367483 cites W2957631534 @default.
- W4313367483 cites W2963881378 @default.
- W4313367483 cites W2965034661 @default.
- W4313367483 cites W2988916019 @default.
- W4313367483 cites W2999516058 @default.
- W4313367483 cites W3000618089 @default.
- W4313367483 cites W3008138440 @default.
- W4313367483 cites W3011389449 @default.
- W4313367483 cites W3040491826 @default.
- W4313367483 cites W3041814977 @default.
- W4313367483 cites W3042532487 @default.
- W4313367483 cites W3092904644 @default.
- W4313367483 cites W3100892116 @default.
- W4313367483 cites W3132455321 @default.
- W4313367483 cites W3149254271 @default.
- W4313367483 cites W3149301430 @default.
- W4313367483 cites W3205291391 @default.
- W4313367483 cites W3214823030 @default.
- W4313367483 cites W4253867788 @default.
- W4313367483 doi "https://doi.org/10.1016/j.optlaseng.2022.107409" @default.
- W4313367483 hasPublicationYear "2023" @default.
- W4313367483 type Work @default.
- W4313367483 citedByCount "1" @default.
- W4313367483 crossrefType "journal-article" @default.
- W4313367483 hasAuthorship W4313367483A5049019196 @default.
- W4313367483 hasAuthorship W4313367483A5054352845 @default.
- W4313367483 hasAuthorship W4313367483A5056208795 @default.
- W4313367483 hasAuthorship W4313367483A5075144456 @default.
- W4313367483 hasAuthorship W4313367483A5086152877 @default.
- W4313367483 hasConcept C11413529 @default.
- W4313367483 hasConcept C138885662 @default.
- W4313367483 hasConcept C153180895 @default.
- W4313367483 hasConcept C154945302 @default.
- W4313367483 hasConcept C178790620 @default.
- W4313367483 hasConcept C185592680 @default.
- W4313367483 hasConcept C2776401178 @default.
- W4313367483 hasConcept C2776521118 @default.
- W4313367483 hasConcept C29081049 @default.
- W4313367483 hasConcept C31972630 @default.
- W4313367483 hasConcept C41008148 @default.
- W4313367483 hasConcept C41895202 @default.
- W4313367483 hasConcept C44280652 @default.
- W4313367483 hasConcept C57493831 @default.
- W4313367483 hasConcept C89600930 @default.
- W4313367483 hasConceptScore W4313367483C11413529 @default.
- W4313367483 hasConceptScore W4313367483C138885662 @default.
- W4313367483 hasConceptScore W4313367483C153180895 @default.
- W4313367483 hasConceptScore W4313367483C154945302 @default.
- W4313367483 hasConceptScore W4313367483C178790620 @default.
- W4313367483 hasConceptScore W4313367483C185592680 @default.
- W4313367483 hasConceptScore W4313367483C2776401178 @default.
- W4313367483 hasConceptScore W4313367483C2776521118 @default.
- W4313367483 hasConceptScore W4313367483C29081049 @default.
- W4313367483 hasConceptScore W4313367483C31972630 @default.
- W4313367483 hasConceptScore W4313367483C41008148 @default.
- W4313367483 hasConceptScore W4313367483C41895202 @default.
- W4313367483 hasConceptScore W4313367483C44280652 @default.
- W4313367483 hasConceptScore W4313367483C57493831 @default.
- W4313367483 hasConceptScore W4313367483C89600930 @default.
- W4313367483 hasFunder F4320321001 @default.
- W4313367483 hasFunder F4320335777 @default.
- W4313367483 hasLocation W43133674831 @default.
- W4313367483 hasOpenAccess W4313367483 @default.
- W4313367483 hasPrimaryLocation W43133674831 @default.
- W4313367483 hasRelatedWork W172825421 @default.
- W4313367483 hasRelatedWork W1982521527 @default.
- W4313367483 hasRelatedWork W2042500775 @default.
- W4313367483 hasRelatedWork W2047652333 @default.
- W4313367483 hasRelatedWork W2091466534 @default.
- W4313367483 hasRelatedWork W2353973219 @default.
- W4313367483 hasRelatedWork W2944699522 @default.