Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313367506> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4313367506 endingPage "100587" @default.
- W4313367506 startingPage "100587" @default.
- W4313367506 abstract "Millions of people are suffering from mental illness due to unavailability of early treatment and services for depression detection. It is the major reason for anxiety disorder, bipolar disorder, sleeping disorder, depression and sometimes it may lead to self-harm and suicide. Thus, it is a very challenging task to recognize people who are suffering from mental health disorders and provide them treatments as early as possible. Conventionally, depression detection was done through patients' interviews and PHQ scores, accuracy of conventional methods is very less. In this work, a hybrid model is proposed for depression detection using deep learning algorithms, which mainly combines textual features and audio features of patient's responses. To study behavioral characteristics of depressed patient's, DAIC-WoZ database is used. Proposed method consists of three components; first, a textual CNN model in which a CNN model is trained with only text features, second, an audio CNN model in which CNN model is trained with only audio features and third, a combination of audio and textual model named as hybrid model in which LSTM algorithms are applied. An improved version of LSTM model named as Bi-LSTM model is also used in the proposed work. In results, training accuracy, training loss, validation accuracy and validation loss is calculated for all the mentioned models. The results shows that deep learning is a better solution for depression detection in which accuracy of textual CNN model is 92% whereas accuracy of audio CNN model is 98% and loss of textual CNN is 0.2 whereas loss of audio CNN is 0.1. These results show that audio CNN is a good model for depression detection. It performs better as compared to textual CNN model. It is also observed that Bi-LSTM has better learning rate as compared to other models with accuracy 88% and validation accuracy 78%. There are some parameters such as precision, F1-score, recall and support are found for evaluation of models. In results, graphs for training loss, validation loss, training accuracy and validation accuracy are plotted. At last, by using confusion matrix depression can be detected for textual CNN Model, audio CNN model, LSTM model and Bi-LSTM against true label and predicted label." @default.
- W4313367506 created "2023-01-06" @default.
- W4313367506 creator A5048444605 @default.
- W4313367506 creator A5065730581 @default.
- W4313367506 creator A5081547339 @default.
- W4313367506 date "2023-02-01" @default.
- W4313367506 modified "2023-09-25" @default.
- W4313367506 title "A hybrid model for depression detection using deep learning" @default.
- W4313367506 cites W1454884387 @default.
- W4313367506 cites W2003502731 @default.
- W4313367506 cites W2023478835 @default.
- W4313367506 cites W2040232951 @default.
- W4313367506 cites W2043627276 @default.
- W4313367506 cites W2071268704 @default.
- W4313367506 cites W2080905830 @default.
- W4313367506 cites W2088846517 @default.
- W4313367506 cites W2098435341 @default.
- W4313367506 cites W2116906649 @default.
- W4313367506 cites W2144723972 @default.
- W4313367506 cites W2160091667 @default.
- W4313367506 cites W2404277124 @default.
- W4313367506 cites W2558919063 @default.
- W4313367506 cites W2784802553 @default.
- W4313367506 cites W2888192920 @default.
- W4313367506 cites W2891155597 @default.
- W4313367506 cites W2917446798 @default.
- W4313367506 cites W2927148761 @default.
- W4313367506 cites W2985169259 @default.
- W4313367506 cites W2990825125 @default.
- W4313367506 cites W3005911073 @default.
- W4313367506 cites W3011679831 @default.
- W4313367506 cites W3016500926 @default.
- W4313367506 cites W3030135760 @default.
- W4313367506 cites W3036914761 @default.
- W4313367506 cites W3101267588 @default.
- W4313367506 cites W3112184078 @default.
- W4313367506 cites W3198936926 @default.
- W4313367506 cites W3215748564 @default.
- W4313367506 cites W4226102260 @default.
- W4313367506 doi "https://doi.org/10.1016/j.measen.2022.100587" @default.
- W4313367506 hasPublicationYear "2023" @default.
- W4313367506 type Work @default.
- W4313367506 citedByCount "0" @default.
- W4313367506 crossrefType "journal-article" @default.
- W4313367506 hasAuthorship W4313367506A5048444605 @default.
- W4313367506 hasAuthorship W4313367506A5065730581 @default.
- W4313367506 hasAuthorship W4313367506A5081547339 @default.
- W4313367506 hasBestOaLocation W43133675061 @default.
- W4313367506 hasConcept C108583219 @default.
- W4313367506 hasConcept C118552586 @default.
- W4313367506 hasConcept C119857082 @default.
- W4313367506 hasConcept C127413603 @default.
- W4313367506 hasConcept C139719470 @default.
- W4313367506 hasConcept C154945302 @default.
- W4313367506 hasConcept C15744967 @default.
- W4313367506 hasConcept C162324750 @default.
- W4313367506 hasConcept C200601418 @default.
- W4313367506 hasConcept C2776867660 @default.
- W4313367506 hasConcept C2780505938 @default.
- W4313367506 hasConcept C41008148 @default.
- W4313367506 hasConcept C558461103 @default.
- W4313367506 hasConceptScore W4313367506C108583219 @default.
- W4313367506 hasConceptScore W4313367506C118552586 @default.
- W4313367506 hasConceptScore W4313367506C119857082 @default.
- W4313367506 hasConceptScore W4313367506C127413603 @default.
- W4313367506 hasConceptScore W4313367506C139719470 @default.
- W4313367506 hasConceptScore W4313367506C154945302 @default.
- W4313367506 hasConceptScore W4313367506C15744967 @default.
- W4313367506 hasConceptScore W4313367506C162324750 @default.
- W4313367506 hasConceptScore W4313367506C200601418 @default.
- W4313367506 hasConceptScore W4313367506C2776867660 @default.
- W4313367506 hasConceptScore W4313367506C2780505938 @default.
- W4313367506 hasConceptScore W4313367506C41008148 @default.
- W4313367506 hasConceptScore W4313367506C558461103 @default.
- W4313367506 hasLocation W43133675061 @default.
- W4313367506 hasOpenAccess W4313367506 @default.
- W4313367506 hasPrimaryLocation W43133675061 @default.
- W4313367506 hasRelatedWork W2795261237 @default.
- W4313367506 hasRelatedWork W3014300295 @default.
- W4313367506 hasRelatedWork W3164822677 @default.
- W4313367506 hasRelatedWork W4223943233 @default.
- W4313367506 hasRelatedWork W4225161397 @default.
- W4313367506 hasRelatedWork W4312200629 @default.
- W4313367506 hasRelatedWork W4360585206 @default.
- W4313367506 hasRelatedWork W4364306694 @default.
- W4313367506 hasRelatedWork W4380075502 @default.
- W4313367506 hasRelatedWork W4380086463 @default.
- W4313367506 hasVolume "25" @default.
- W4313367506 isParatext "false" @default.
- W4313367506 isRetracted "false" @default.
- W4313367506 workType "article" @default.