Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313367539> ?p ?o ?g. }
- W4313367539 endingPage "282" @default.
- W4313367539 startingPage "246" @default.
- W4313367539 abstract "Particle swarm optimization (PSO) is a well-known optimization method used for solving various optimization problems. However, PSO suffers from premature convergence and is ineffective in balancing exploration and exploitation when solving complex optimization problems. To overcome these drawbacks of PSO, a multi-sample learning particle swarm optimization with adaptive crossover operation (MLPSO) is proposed. In MLPSO, two novel strategies, multi-sample selecting strategy (MSS) and adaptive sample crossover strategy (ASC), are used to select proper learning samples for the whole population. Firstly, in MSS, two sample pools, namely elite pool and improver pool, are used to save elites and improvers. Elites are the particles with preferable fitness, while improvers denote the particles whose fitness have been improved largely in recent consecutive generations. In each generation, two particles are randomly selected from the two sample pools respectively to breed a learning sample through crossover operation for the whole population. Therefore, the generated learning sample by MSS strategy contains more diversity information. Secondly, in ASC, various crossover operations are conducted for breeding a learning sample according to the evolutionary states. Therefore, the ASC strategy proposed in this paper can realize a better trade-off between exploration and exploitation. Finally, the performance of MLPSO is evaluated using CEC2013, CEC2017 test suites and three engineering optimization problems. Experimental results show that MLPSO outperforms compared seven competitive PSO variants and 19 meta-heuristics algorithms in most functions." @default.
- W4313367539 created "2023-01-06" @default.
- W4313367539 creator A5001454737 @default.
- W4313367539 creator A5026742004 @default.
- W4313367539 date "2023-06-01" @default.
- W4313367539 modified "2023-10-01" @default.
- W4313367539 title "Multi-sample learning particle swarm optimization with adaptive crossover operation" @default.
- W4313367539 cites W1179686678 @default.
- W4313367539 cites W1998391576 @default.
- W4313367539 cites W2003890325 @default.
- W4313367539 cites W2061438946 @default.
- W4313367539 cites W2062238863 @default.
- W4313367539 cites W2063757130 @default.
- W4313367539 cites W2072955302 @default.
- W4313367539 cites W2112036188 @default.
- W4313367539 cites W2123066915 @default.
- W4313367539 cites W2131613989 @default.
- W4313367539 cites W2139339670 @default.
- W4313367539 cites W2151554678 @default.
- W4313367539 cites W2155529731 @default.
- W4313367539 cites W2187537484 @default.
- W4313367539 cites W2290883490 @default.
- W4313367539 cites W2585392941 @default.
- W4313367539 cites W2586121636 @default.
- W4313367539 cites W2602420801 @default.
- W4313367539 cites W2737913985 @default.
- W4313367539 cites W2738900493 @default.
- W4313367539 cites W2751219571 @default.
- W4313367539 cites W2751383815 @default.
- W4313367539 cites W2789930262 @default.
- W4313367539 cites W2793547514 @default.
- W4313367539 cites W2800384987 @default.
- W4313367539 cites W2887897850 @default.
- W4313367539 cites W2908286818 @default.
- W4313367539 cites W2925099289 @default.
- W4313367539 cites W2945366039 @default.
- W4313367539 cites W2970404044 @default.
- W4313367539 cites W2979736100 @default.
- W4313367539 cites W2984153401 @default.
- W4313367539 cites W3009198655 @default.
- W4313367539 cites W3034264256 @default.
- W4313367539 cites W3049686946 @default.
- W4313367539 cites W3063913079 @default.
- W4313367539 cites W3080473944 @default.
- W4313367539 cites W3111880395 @default.
- W4313367539 cites W3116833914 @default.
- W4313367539 cites W3118656546 @default.
- W4313367539 cites W3130191494 @default.
- W4313367539 cites W3133536585 @default.
- W4313367539 cites W3155564730 @default.
- W4313367539 cites W3157781275 @default.
- W4313367539 cites W3182500431 @default.
- W4313367539 cites W3186120123 @default.
- W4313367539 cites W3188527575 @default.
- W4313367539 cites W3193441984 @default.
- W4313367539 cites W3195603285 @default.
- W4313367539 cites W3197516938 @default.
- W4313367539 cites W4210662813 @default.
- W4313367539 cites W4214502311 @default.
- W4313367539 cites W4214711877 @default.
- W4313367539 cites W4220814796 @default.
- W4313367539 cites W4225246099 @default.
- W4313367539 cites W4280488706 @default.
- W4313367539 cites W4280541876 @default.
- W4313367539 cites W4285810043 @default.
- W4313367539 cites W4288036399 @default.
- W4313367539 cites W4288737721 @default.
- W4313367539 cites W4288905760 @default.
- W4313367539 cites W4293147214 @default.
- W4313367539 cites W4302598362 @default.
- W4313367539 cites W4376453289 @default.
- W4313367539 doi "https://doi.org/10.1016/j.matcom.2022.12.020" @default.
- W4313367539 hasPublicationYear "2023" @default.
- W4313367539 type Work @default.
- W4313367539 citedByCount "1" @default.
- W4313367539 countsByYear W43133675392023 @default.
- W4313367539 crossrefType "journal-article" @default.
- W4313367539 hasAuthorship W4313367539A5001454737 @default.
- W4313367539 hasAuthorship W4313367539A5026742004 @default.
- W4313367539 hasConcept C105795698 @default.
- W4313367539 hasConcept C109718341 @default.
- W4313367539 hasConcept C119487961 @default.
- W4313367539 hasConcept C119857082 @default.
- W4313367539 hasConcept C122357587 @default.
- W4313367539 hasConcept C122507166 @default.
- W4313367539 hasConcept C126255220 @default.
- W4313367539 hasConcept C129848803 @default.
- W4313367539 hasConcept C137836250 @default.
- W4313367539 hasConcept C144024400 @default.
- W4313367539 hasConcept C149923435 @default.
- W4313367539 hasConcept C154945302 @default.
- W4313367539 hasConcept C159149176 @default.
- W4313367539 hasConcept C162324750 @default.
- W4313367539 hasConcept C181335050 @default.
- W4313367539 hasConcept C185592680 @default.
- W4313367539 hasConcept C198531522 @default.
- W4313367539 hasConcept C2777303404 @default.
- W4313367539 hasConcept C2908647359 @default.