Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313367597> ?p ?o ?g. }
- W4313367597 endingPage "108082" @default.
- W4313367597 startingPage "108082" @default.
- W4313367597 abstract "Mesh reflectors are uncertain structures due to manufacturing and assembly errors. Shape adjustment must be made to meet the surface precision requirement of space missions by changing the lengths of adjustable cables. It is desirable to find the optimum adjustment amount based on the current state of the actual prototype. However, it is hard to build an accuracy simulation model reflecting mechanical behavior of the actual prototype because only part information about the actual prototype can be measured. Therefore, it is necessary to deal with the parameter uncertainty of the actual prototype in order to provide a reliable structure state to guide the shape adjustment. This field has not been well studied because it involves an uncertainty analysis of parameters and the nonlinearity of high coupling of node displacements. To improve the efficiency of shape adjustment of uncertain mesh reflectors, this paper combines finite element model, actual prototype, and machine learning algorithm to develop a prediction model for precision analysis of the mesh reflector under multi-uncertainties using a machine learning algorithm (extreme gradient boosting), with the reflector surface node position as the input and the cable length adjustment amount required to displace it to a high precision surface as the output. First, based on the nominal design model, the sample data is collected by the Latin hypercube design method; the nonlinearity of the structure was taken into account by iterative solution during the data sampling, and the uncertain models containing different random errors are fused from the perspective of data sampling. The Bayesian optimization algorithm is used to obtain the optimal hyperparameters that enables strong generalization of the prediction model. Next, learning from the idea of K-nearest neighbor algorithm, the prediction model is updated based on the actual prototype data, which further improves the prediction ability of the current prototype to be adjusted. The incremental learning algorithm is used to reduce the time-consuming of the prediction model updating. Finally, numerical examples and experiments show that the proposed method has higher adjustment efficiency and precision with less workload." @default.
- W4313367597 created "2023-01-06" @default.
- W4313367597 creator A5006910804 @default.
- W4313367597 creator A5010418672 @default.
- W4313367597 creator A5034777358 @default.
- W4313367597 creator A5057631537 @default.
- W4313367597 creator A5091661156 @default.
- W4313367597 date "2023-04-01" @default.
- W4313367597 modified "2023-10-09" @default.
- W4313367597 title "Shape adjustment for uncertain mesh reflectors using machine learning" @default.
- W4313367597 cites W1041128124 @default.
- W4313367597 cites W1494192115 @default.
- W4313367597 cites W1973810734 @default.
- W4313367597 cites W1976726012 @default.
- W4313367597 cites W1977450271 @default.
- W4313367597 cites W1990093354 @default.
- W4313367597 cites W1991427271 @default.
- W4313367597 cites W1992128494 @default.
- W4313367597 cites W2012451526 @default.
- W4313367597 cites W2013848077 @default.
- W4313367597 cites W2024499584 @default.
- W4313367597 cites W2034964209 @default.
- W4313367597 cites W2036579929 @default.
- W4313367597 cites W2045708450 @default.
- W4313367597 cites W2047031110 @default.
- W4313367597 cites W2051873053 @default.
- W4313367597 cites W2058690002 @default.
- W4313367597 cites W2065453164 @default.
- W4313367597 cites W2085157379 @default.
- W4313367597 cites W2085329834 @default.
- W4313367597 cites W2091934641 @default.
- W4313367597 cites W2102253253 @default.
- W4313367597 cites W2113596155 @default.
- W4313367597 cites W2122222270 @default.
- W4313367597 cites W2122331846 @default.
- W4313367597 cites W2131620359 @default.
- W4313367597 cites W2157279577 @default.
- W4313367597 cites W2158143121 @default.
- W4313367597 cites W2181407545 @default.
- W4313367597 cites W2478720716 @default.
- W4313367597 cites W2534891561 @default.
- W4313367597 cites W2550447515 @default.
- W4313367597 cites W2553209264 @default.
- W4313367597 cites W2573182459 @default.
- W4313367597 cites W2743039306 @default.
- W4313367597 cites W2754001478 @default.
- W4313367597 cites W2758941972 @default.
- W4313367597 cites W2767578021 @default.
- W4313367597 cites W2792598728 @default.
- W4313367597 cites W2795798059 @default.
- W4313367597 cites W2801356208 @default.
- W4313367597 cites W2807809811 @default.
- W4313367597 cites W2886793380 @default.
- W4313367597 cites W2895696976 @default.
- W4313367597 cites W2898715041 @default.
- W4313367597 cites W2901474455 @default.
- W4313367597 cites W2934623858 @default.
- W4313367597 cites W2942339417 @default.
- W4313367597 cites W2944081079 @default.
- W4313367597 cites W2950145134 @default.
- W4313367597 cites W2967423337 @default.
- W4313367597 cites W2972410609 @default.
- W4313367597 cites W3004311535 @default.
- W4313367597 cites W3041981321 @default.
- W4313367597 cites W3134684220 @default.
- W4313367597 cites W3137111608 @default.
- W4313367597 cites W3160498511 @default.
- W4313367597 cites W3161478606 @default.
- W4313367597 cites W3178699510 @default.
- W4313367597 cites W3185246804 @default.
- W4313367597 cites W4224996675 @default.
- W4313367597 cites W4289812834 @default.
- W4313367597 doi "https://doi.org/10.1016/j.ijmecsci.2022.108082" @default.
- W4313367597 hasPublicationYear "2023" @default.
- W4313367597 type Work @default.
- W4313367597 citedByCount "1" @default.
- W4313367597 countsByYear W43133675972023 @default.
- W4313367597 crossrefType "journal-article" @default.
- W4313367597 hasAuthorship W4313367597A5006910804 @default.
- W4313367597 hasAuthorship W4313367597A5010418672 @default.
- W4313367597 hasAuthorship W4313367597A5034777358 @default.
- W4313367597 hasAuthorship W4313367597A5057631537 @default.
- W4313367597 hasAuthorship W4313367597A5091661156 @default.
- W4313367597 hasConcept C10138342 @default.
- W4313367597 hasConcept C105795698 @default.
- W4313367597 hasConcept C106131492 @default.
- W4313367597 hasConcept C11413529 @default.
- W4313367597 hasConcept C120665830 @default.
- W4313367597 hasConcept C121332964 @default.
- W4313367597 hasConcept C126255220 @default.
- W4313367597 hasConcept C127413603 @default.
- W4313367597 hasConcept C135628077 @default.
- W4313367597 hasConcept C140779682 @default.
- W4313367597 hasConcept C158622935 @default.
- W4313367597 hasConcept C162324750 @default.
- W4313367597 hasConcept C19499675 @default.
- W4313367597 hasConcept C198082294 @default.
- W4313367597 hasConcept C20820323 @default.