Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313367649> ?p ?o ?g. }
- W4313367649 endingPage "105920" @default.
- W4313367649 startingPage "105920" @default.
- W4313367649 abstract "A crucial component in structure-based drug discovery is the availability of high-quality three-dimensional structures of the protein target. Whenever experimental structures were not available, homology modeling has been, so far, the method of choice. Recently, AlphaFold (AF), an artificial-intelligence-based protein structure prediction method, has shown impressive results in terms of model accuracy. This outstanding success prompted us to evaluate how accurate AF models are from the perspective of docking-based drug discovery. We compared the high-throughput docking (HTD) performance of AF models with their corresponding experimental PDB structures using a benchmark set of 22 targets. The AF models showed consistently worse performance using four docking programs and two consensus techniques. Although AlphaFold shows a remarkable ability to predict protein architecture, this might not be enough to guarantee that AF models can be reliably used for HTD, and post-modeling refinement strategies might be key to increase the chances of success." @default.
- W4313367649 created "2023-01-06" @default.
- W4313367649 creator A5026257448 @default.
- W4313367649 creator A5057077535 @default.
- W4313367649 creator A5089844490 @default.
- W4313367649 date "2023-01-01" @default.
- W4313367649 modified "2023-10-09" @default.
- W4313367649 title "How good are AlphaFold models for docking-based virtual screening?" @default.
- W4313367649 cites W1968319881 @default.
- W4313367649 cites W1969875513 @default.
- W4313367649 cites W1977933611 @default.
- W4313367649 cites W1983371169 @default.
- W4313367649 cites W1984030577 @default.
- W4313367649 cites W1988437166 @default.
- W4313367649 cites W1996253840 @default.
- W4313367649 cites W2003966981 @default.
- W4313367649 cites W2006197769 @default.
- W4313367649 cites W2021750784 @default.
- W4313367649 cites W2029087609 @default.
- W4313367649 cites W2034333506 @default.
- W4313367649 cites W2037504748 @default.
- W4313367649 cites W2038772855 @default.
- W4313367649 cites W2044444984 @default.
- W4313367649 cites W2047544230 @default.
- W4313367649 cites W2051150502 @default.
- W4313367649 cites W2052420006 @default.
- W4313367649 cites W2056788931 @default.
- W4313367649 cites W2057846043 @default.
- W4313367649 cites W2063273962 @default.
- W4313367649 cites W2067837249 @default.
- W4313367649 cites W2070577912 @default.
- W4313367649 cites W2102377211 @default.
- W4313367649 cites W2105668062 @default.
- W4313367649 cites W2111143975 @default.
- W4313367649 cites W2127760066 @default.
- W4313367649 cites W2140673705 @default.
- W4313367649 cites W2163394542 @default.
- W4313367649 cites W2166998608 @default.
- W4313367649 cites W2167086539 @default.
- W4313367649 cites W2170665326 @default.
- W4313367649 cites W2191870413 @default.
- W4313367649 cites W2316620683 @default.
- W4313367649 cites W2318173210 @default.
- W4313367649 cites W2894110362 @default.
- W4313367649 cites W2903966663 @default.
- W4313367649 cites W2925328267 @default.
- W4313367649 cites W3018036610 @default.
- W4313367649 cites W3114321016 @default.
- W4313367649 cites W3151633358 @default.
- W4313367649 cites W3164566829 @default.
- W4313367649 cites W3177828909 @default.
- W4313367649 cites W3178087467 @default.
- W4313367649 cites W3183475563 @default.
- W4313367649 cites W3203459683 @default.
- W4313367649 cites W3208999135 @default.
- W4313367649 cites W3210124855 @default.
- W4313367649 cites W3211795435 @default.
- W4313367649 cites W3212531952 @default.
- W4313367649 cites W4205620281 @default.
- W4313367649 cites W4205827692 @default.
- W4313367649 cites W4205929130 @default.
- W4313367649 cites W4205989901 @default.
- W4313367649 cites W4220824576 @default.
- W4313367649 cites W4226432872 @default.
- W4313367649 cites W4229000770 @default.
- W4313367649 cites W4229373389 @default.
- W4313367649 cites W4281790889 @default.
- W4313367649 cites W4283219703 @default.
- W4313367649 cites W4285594705 @default.
- W4313367649 cites W4294719209 @default.
- W4313367649 cites W4295757800 @default.
- W4313367649 cites W4308463927 @default.
- W4313367649 doi "https://doi.org/10.1016/j.isci.2022.105920" @default.
- W4313367649 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36686396" @default.
- W4313367649 hasPublicationYear "2023" @default.
- W4313367649 type Work @default.
- W4313367649 citedByCount "18" @default.
- W4313367649 countsByYear W43133676492023 @default.
- W4313367649 crossrefType "journal-article" @default.
- W4313367649 hasAuthorship W4313367649A5026257448 @default.
- W4313367649 hasAuthorship W4313367649A5057077535 @default.
- W4313367649 hasAuthorship W4313367649A5089844490 @default.
- W4313367649 hasBestOaLocation W43133676491 @default.
- W4313367649 hasConcept C103697762 @default.
- W4313367649 hasConcept C119857082 @default.
- W4313367649 hasConcept C124101348 @default.
- W4313367649 hasConcept C154945302 @default.
- W4313367649 hasConcept C159110408 @default.
- W4313367649 hasConcept C169627665 @default.
- W4313367649 hasConcept C18051474 @default.
- W4313367649 hasConcept C181199279 @default.
- W4313367649 hasConcept C185592680 @default.
- W4313367649 hasConcept C41008148 @default.
- W4313367649 hasConcept C41685203 @default.
- W4313367649 hasConcept C47701112 @default.
- W4313367649 hasConcept C55493867 @default.
- W4313367649 hasConcept C60644358 @default.
- W4313367649 hasConcept C70721500 @default.