Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313367701> ?p ?o ?g. }
- W4313367701 endingPage "110236" @default.
- W4313367701 startingPage "110236" @default.
- W4313367701 abstract "Text style transfer aims at transforming the style of a piece of text while keeping its primary content. The style of the text is usually defined as a particular writing tone in different categories, such as formality, politeness, sentiment, and political slant. Recently, most of the work in the area has been devoted to the problem of sentiment transfer, which tries to transfer an opinionated text into a positive or negative perspective. It has applications in marketing, political news, chatbots, writing tools, and many others. On the other hand, emotions as the basic forms of sentiments have brought many attentions to different tasks, including image style transfer but they are not well expressed in text style transfer yet. This article presents a text emotion transfer model that transforms the style of a text to each of the predefined ‘anger’, ‘fear’, ‘joy’, and ‘sadness’ emotions. Relying on masked language modeling and transfer learning, the proposed model can perform efficiently on limited amounts of emotion-annotated data. Moreover, the model shows promising experimental results against other existing models considering style transfer accuracy, content preservation, and fluency in the ISEAR and TEC emotion corpora." @default.
- W4313367701 created "2023-01-06" @default.
- W4313367701 creator A5024040257 @default.
- W4313367701 creator A5061714896 @default.
- W4313367701 date "2023-02-01" @default.
- W4313367701 modified "2023-10-14" @default.
- W4313367701 title "TET: Text emotion transfer" @default.
- W4313367701 cites W1569507287 @default.
- W4313367701 cites W1966797434 @default.
- W4313367701 cites W1988733743 @default.
- W4313367701 cites W2005377965 @default.
- W4313367701 cites W2107598941 @default.
- W4313367701 cites W2113040794 @default.
- W4313367701 cites W2128837546 @default.
- W4313367701 cites W2157331557 @default.
- W4313367701 cites W2331128040 @default.
- W4313367701 cites W2475287302 @default.
- W4313367701 cites W2550821151 @default.
- W4313367701 cites W2573681768 @default.
- W4313367701 cites W2582154088 @default.
- W4313367701 cites W2754447548 @default.
- W4313367701 cites W2798989012 @default.
- W4313367701 cites W2889411261 @default.
- W4313367701 cites W2890631927 @default.
- W4313367701 cites W2925000324 @default.
- W4313367701 cites W2949980515 @default.
- W4313367701 cites W2952335829 @default.
- W4313367701 cites W2962750587 @default.
- W4313367701 cites W2962793481 @default.
- W4313367701 cites W2963631950 @default.
- W4313367701 cites W2963667126 @default.
- W4313367701 cites W2963712766 @default.
- W4313367701 cites W2963767194 @default.
- W4313367701 cites W2964008635 @default.
- W4313367701 cites W2964199361 @default.
- W4313367701 cites W2964321064 @default.
- W4313367701 cites W2964529779 @default.
- W4313367701 cites W2968231335 @default.
- W4313367701 cites W2970480900 @default.
- W4313367701 cites W3007877525 @default.
- W4313367701 cites W3041202055 @default.
- W4313367701 cites W3046202445 @default.
- W4313367701 cites W3099852471 @default.
- W4313367701 cites W3102774478 @default.
- W4313367701 cites W3107679445 @default.
- W4313367701 cites W3118019865 @default.
- W4313367701 cites W3168921656 @default.
- W4313367701 cites W3173801460 @default.
- W4313367701 cites W3175315904 @default.
- W4313367701 cites W3176935213 @default.
- W4313367701 cites W3202767484 @default.
- W4313367701 cites W3202775307 @default.
- W4313367701 cites W4221038141 @default.
- W4313367701 cites W4221166475 @default.
- W4313367701 cites W4234568074 @default.
- W4313367701 cites W4283802444 @default.
- W4313367701 cites W4285306086 @default.
- W4313367701 cites W4286511258 @default.
- W4313367701 cites W4290712875 @default.
- W4313367701 doi "https://doi.org/10.1016/j.knosys.2022.110236" @default.
- W4313367701 hasPublicationYear "2023" @default.
- W4313367701 type Work @default.
- W4313367701 citedByCount "1" @default.
- W4313367701 countsByYear W43133677012023 @default.
- W4313367701 crossrefType "journal-article" @default.
- W4313367701 hasAuthorship W4313367701A5024040257 @default.
- W4313367701 hasAuthorship W4313367701A5061714896 @default.
- W4313367701 hasConcept C12713177 @default.
- W4313367701 hasConcept C13622073 @default.
- W4313367701 hasConcept C138885662 @default.
- W4313367701 hasConcept C154945302 @default.
- W4313367701 hasConcept C15744967 @default.
- W4313367701 hasConcept C166957645 @default.
- W4313367701 hasConcept C171041071 @default.
- W4313367701 hasConcept C204321447 @default.
- W4313367701 hasConcept C206310091 @default.
- W4313367701 hasConcept C2776445246 @default.
- W4313367701 hasConcept C2777159308 @default.
- W4313367701 hasConcept C2777413886 @default.
- W4313367701 hasConcept C2779178101 @default.
- W4313367701 hasConcept C2779302386 @default.
- W4313367701 hasConcept C2779812673 @default.
- W4313367701 hasConcept C2780583480 @default.
- W4313367701 hasConcept C41008148 @default.
- W4313367701 hasConcept C41895202 @default.
- W4313367701 hasConcept C61123122 @default.
- W4313367701 hasConcept C66402592 @default.
- W4313367701 hasConcept C77805123 @default.
- W4313367701 hasConcept C95457728 @default.
- W4313367701 hasConceptScore W4313367701C12713177 @default.
- W4313367701 hasConceptScore W4313367701C13622073 @default.
- W4313367701 hasConceptScore W4313367701C138885662 @default.
- W4313367701 hasConceptScore W4313367701C154945302 @default.
- W4313367701 hasConceptScore W4313367701C15744967 @default.
- W4313367701 hasConceptScore W4313367701C166957645 @default.
- W4313367701 hasConceptScore W4313367701C171041071 @default.
- W4313367701 hasConceptScore W4313367701C204321447 @default.
- W4313367701 hasConceptScore W4313367701C206310091 @default.