Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313367736> ?p ?o ?g. }
- W4313367736 endingPage "663" @default.
- W4313367736 startingPage "636" @default.
- W4313367736 abstract "In this paper, we introduce the fractional Sturm–Liouville operators and present the polar fractional Laplacian as a particular case of these operators. We also consider the distributed order space–time fractional diffusion equation involving the polar fractional Laplacian and propose three approaches for studying this problem on the circle and ring domains. First, we apply the integral transforms as the analytical methods to get the solution in terms of the Laplace-type integrals using the Titchmarsh theorem. Second, we use the finite difference method for discretization of the space variable and employ the matrix transfer technique to obtain a system of the distributed order fractional equations. For this system, we modify the Putzer’s algorithm and get the solution in terms of the eigenvalues of discretization matrix. Third, we employ the backward Euler numerical method for discretization of the time variable and find the corresponding error bound. Moreover, we compare and verify the approximate solutions with the exact solutions in analytical form." @default.
- W4313367736 created "2023-01-06" @default.
- W4313367736 creator A5059240404 @default.
- W4313367736 creator A5081638585 @default.
- W4313367736 date "2023-04-01" @default.
- W4313367736 modified "2023-10-03" @default.
- W4313367736 title "On spectral polar fractional Laplacian" @default.
- W4313367736 cites W1548669157 @default.
- W4313367736 cites W1867491831 @default.
- W4313367736 cites W1975765037 @default.
- W4313367736 cites W1997050292 @default.
- W4313367736 cites W1999710084 @default.
- W4313367736 cites W200132056 @default.
- W4313367736 cites W2006281429 @default.
- W4313367736 cites W2026946703 @default.
- W4313367736 cites W2031773299 @default.
- W4313367736 cites W2049005128 @default.
- W4313367736 cites W2083488564 @default.
- W4313367736 cites W2090865839 @default.
- W4313367736 cites W2109779582 @default.
- W4313367736 cites W2118288723 @default.
- W4313367736 cites W2120534562 @default.
- W4313367736 cites W2403013993 @default.
- W4313367736 cites W2490499640 @default.
- W4313367736 cites W2533879307 @default.
- W4313367736 cites W2565001887 @default.
- W4313367736 cites W2590420167 @default.
- W4313367736 cites W2597485688 @default.
- W4313367736 cites W2767551809 @default.
- W4313367736 cites W2768075861 @default.
- W4313367736 cites W2782739143 @default.
- W4313367736 cites W2788922182 @default.
- W4313367736 cites W2793939407 @default.
- W4313367736 cites W2921009460 @default.
- W4313367736 cites W2922608765 @default.
- W4313367736 cites W2959736369 @default.
- W4313367736 cites W2961670606 @default.
- W4313367736 cites W2962785683 @default.
- W4313367736 cites W2970494462 @default.
- W4313367736 cites W3042009325 @default.
- W4313367736 cites W3088266893 @default.
- W4313367736 cites W3135099163 @default.
- W4313367736 cites W3159286050 @default.
- W4313367736 cites W3163935703 @default.
- W4313367736 cites W3165996644 @default.
- W4313367736 cites W3173158527 @default.
- W4313367736 cites W3206352531 @default.
- W4313367736 cites W3215422660 @default.
- W4313367736 cites W4205092834 @default.
- W4313367736 cites W4281260086 @default.
- W4313367736 cites W4281784835 @default.
- W4313367736 cites W4284994083 @default.
- W4313367736 cites W4292263680 @default.
- W4313367736 cites W4297231091 @default.
- W4313367736 cites W833140947 @default.
- W4313367736 doi "https://doi.org/10.1016/j.matcom.2022.12.008" @default.
- W4313367736 hasPublicationYear "2023" @default.
- W4313367736 type Work @default.
- W4313367736 citedByCount "7" @default.
- W4313367736 countsByYear W43133677362023 @default.
- W4313367736 crossrefType "journal-article" @default.
- W4313367736 hasAuthorship W4313367736A5059240404 @default.
- W4313367736 hasAuthorship W4313367736A5081638585 @default.
- W4313367736 hasConcept C106487976 @default.
- W4313367736 hasConcept C115178988 @default.
- W4313367736 hasConcept C121332964 @default.
- W4313367736 hasConcept C134306372 @default.
- W4313367736 hasConcept C154249771 @default.
- W4313367736 hasConcept C158693339 @default.
- W4313367736 hasConcept C159985019 @default.
- W4313367736 hasConcept C165700671 @default.
- W4313367736 hasConcept C182365436 @default.
- W4313367736 hasConcept C192562407 @default.
- W4313367736 hasConcept C28826006 @default.
- W4313367736 hasConcept C33923547 @default.
- W4313367736 hasConcept C520416788 @default.
- W4313367736 hasConcept C62520636 @default.
- W4313367736 hasConcept C73000952 @default.
- W4313367736 hasConcept C97937538 @default.
- W4313367736 hasConceptScore W4313367736C106487976 @default.
- W4313367736 hasConceptScore W4313367736C115178988 @default.
- W4313367736 hasConceptScore W4313367736C121332964 @default.
- W4313367736 hasConceptScore W4313367736C134306372 @default.
- W4313367736 hasConceptScore W4313367736C154249771 @default.
- W4313367736 hasConceptScore W4313367736C158693339 @default.
- W4313367736 hasConceptScore W4313367736C159985019 @default.
- W4313367736 hasConceptScore W4313367736C165700671 @default.
- W4313367736 hasConceptScore W4313367736C182365436 @default.
- W4313367736 hasConceptScore W4313367736C192562407 @default.
- W4313367736 hasConceptScore W4313367736C28826006 @default.
- W4313367736 hasConceptScore W4313367736C33923547 @default.
- W4313367736 hasConceptScore W4313367736C520416788 @default.
- W4313367736 hasConceptScore W4313367736C62520636 @default.
- W4313367736 hasConceptScore W4313367736C73000952 @default.
- W4313367736 hasConceptScore W4313367736C97937538 @default.
- W4313367736 hasFunder F4320322969 @default.
- W4313367736 hasLocation W43133677361 @default.
- W4313367736 hasOpenAccess W4313367736 @default.