Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313367764> ?p ?o ?g. }
- W4313367764 endingPage "109096" @default.
- W4313367764 startingPage "109096" @default.
- W4313367764 abstract "In this paper, the Eulerian stochastic fields (ESF) method in a LES framework is applied to a generic selective catalytic reduction (SCR) configuration in order to retrieve seamlessly the effect of turbulence–chemistry interaction on the NH3-conversion and AdBlue film formation. The ESF method is based on the transport equation of a joint scalar filtered density function. The injection of AdBlue and relevant spray dynamics are modeled by the Lagrange-particle description where a computational parcel represents a cluster of real AdBlue droplets. Owing to the low injection pressure, weak atomization of AdBlue leads to intense droplet wall-impingement and film formation on the SCR duct wall and/or on the mixer elements, if present. A 2-D thin film approach is adopted to model the film formation and dynamics in combination with multi-regimes droplet–wall interaction model. After verification tasks against the reference data for simple gas phase reactive cases, the verified ESF method is coupled with a one-equation based LES turbulence model together with the Lagrange particle-tracking which is combined with the 2-D thin film approach to simulate the AdBlue injection and the film formation in the generic SCR configuration. At first, the assessment of the adopted LES mesh is carried out in terms of the so-called LES quality of index to determine the optimal mesh resolution. Next, to ensure the convergence with respect to the number of required ESF and mesh resolution, SCR simulations are performed by using various (2, 4, 6, 8, 12 and 16) stochastic fields and also with refined mesh. Thereby, the sensitivity of the predictive capability of the numerical tool is evaluated for the production of NH3 and HNCO with and without ESFs. This clearly indicates the importance of an accurate description of the turbulence–chemistry interaction to retrieve reliably the conversion of NH3. Finally, the film dynamics especially the evolution of the film thickness described with six required ESF and without ESF is compared with experimental data from the generic SCR configurations. To further demonstrate the potential of suggested numerical approach, a detailed numerical analysis is provided in terms of spray-impingement dynamics, scalar uniformity index, droplet life time and characteristics of the droplets prone to form solid deposits in the monolith channel." @default.
- W4313367764 created "2023-01-06" @default.
- W4313367764 creator A5019630120 @default.
- W4313367764 creator A5045023512 @default.
- W4313367764 creator A5081112380 @default.
- W4313367764 creator A5081559178 @default.
- W4313367764 date "2023-02-01" @default.
- W4313367764 modified "2023-10-18" @default.
- W4313367764 title "Numerical investigation of AdBlue film formation and NH3 conversion in generic SCR system using Eulerian stochastic fields method" @default.
- W4313367764 cites W1009979498 @default.
- W4313367764 cites W1978521305 @default.
- W4313367764 cites W1986492322 @default.
- W4313367764 cites W1991043159 @default.
- W4313367764 cites W1994376567 @default.
- W4313367764 cites W1998929768 @default.
- W4313367764 cites W2004716112 @default.
- W4313367764 cites W2008125897 @default.
- W4313367764 cites W2011866185 @default.
- W4313367764 cites W2015596325 @default.
- W4313367764 cites W2028728755 @default.
- W4313367764 cites W2029850555 @default.
- W4313367764 cites W2057393236 @default.
- W4313367764 cites W2076470945 @default.
- W4313367764 cites W2102393644 @default.
- W4313367764 cites W2119602698 @default.
- W4313367764 cites W2120062272 @default.
- W4313367764 cites W2189506764 @default.
- W4313367764 cites W2292512752 @default.
- W4313367764 cites W2443111281 @default.
- W4313367764 cites W2530614469 @default.
- W4313367764 cites W2560216373 @default.
- W4313367764 cites W2771634754 @default.
- W4313367764 cites W2785070323 @default.
- W4313367764 cites W2792474192 @default.
- W4313367764 cites W2885326508 @default.
- W4313367764 cites W2907938125 @default.
- W4313367764 cites W2954176263 @default.
- W4313367764 cites W3041996466 @default.
- W4313367764 cites W3047593163 @default.
- W4313367764 cites W3122279120 @default.
- W4313367764 cites W3140594807 @default.
- W4313367764 cites W3188756255 @default.
- W4313367764 cites W3196875410 @default.
- W4313367764 cites W3203544320 @default.
- W4313367764 doi "https://doi.org/10.1016/j.ijheatfluidflow.2022.109096" @default.
- W4313367764 hasPublicationYear "2023" @default.
- W4313367764 type Work @default.
- W4313367764 citedByCount "1" @default.
- W4313367764 countsByYear W43133677642023 @default.
- W4313367764 crossrefType "journal-article" @default.
- W4313367764 hasAuthorship W4313367764A5019630120 @default.
- W4313367764 hasAuthorship W4313367764A5045023512 @default.
- W4313367764 hasAuthorship W4313367764A5081112380 @default.
- W4313367764 hasAuthorship W4313367764A5081559178 @default.
- W4313367764 hasConcept C121332964 @default.
- W4313367764 hasConcept C1633027 @default.
- W4313367764 hasConcept C192562407 @default.
- W4313367764 hasConcept C196558001 @default.
- W4313367764 hasConcept C2524010 @default.
- W4313367764 hasConcept C28826006 @default.
- W4313367764 hasConcept C33923547 @default.
- W4313367764 hasConcept C41008148 @default.
- W4313367764 hasConcept C43058520 @default.
- W4313367764 hasConcept C44154836 @default.
- W4313367764 hasConcept C53469067 @default.
- W4313367764 hasConcept C57691317 @default.
- W4313367764 hasConcept C57879066 @default.
- W4313367764 hasConceptScore W4313367764C121332964 @default.
- W4313367764 hasConceptScore W4313367764C1633027 @default.
- W4313367764 hasConceptScore W4313367764C192562407 @default.
- W4313367764 hasConceptScore W4313367764C196558001 @default.
- W4313367764 hasConceptScore W4313367764C2524010 @default.
- W4313367764 hasConceptScore W4313367764C28826006 @default.
- W4313367764 hasConceptScore W4313367764C33923547 @default.
- W4313367764 hasConceptScore W4313367764C41008148 @default.
- W4313367764 hasConceptScore W4313367764C43058520 @default.
- W4313367764 hasConceptScore W4313367764C44154836 @default.
- W4313367764 hasConceptScore W4313367764C53469067 @default.
- W4313367764 hasConceptScore W4313367764C57691317 @default.
- W4313367764 hasConceptScore W4313367764C57879066 @default.
- W4313367764 hasFunder F4320320879 @default.
- W4313367764 hasFunder F4320323384 @default.
- W4313367764 hasLocation W43133677641 @default.
- W4313367764 hasOpenAccess W4313367764 @default.
- W4313367764 hasPrimaryLocation W43133677641 @default.
- W4313367764 hasRelatedWork W1967108448 @default.
- W4313367764 hasRelatedWork W1984607804 @default.
- W4313367764 hasRelatedWork W1995602692 @default.
- W4313367764 hasRelatedWork W1997392687 @default.
- W4313367764 hasRelatedWork W2032159661 @default.
- W4313367764 hasRelatedWork W2367466538 @default.
- W4313367764 hasRelatedWork W2925305938 @default.
- W4313367764 hasRelatedWork W3204825449 @default.
- W4313367764 hasRelatedWork W4362649909 @default.
- W4313367764 hasRelatedWork W3141577196 @default.
- W4313367764 hasVolume "99" @default.
- W4313367764 isParatext "false" @default.
- W4313367764 isRetracted "false" @default.