Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313367823> ?p ?o ?g. }
- W4313367823 endingPage "117114" @default.
- W4313367823 startingPage "117114" @default.
- W4313367823 abstract "Forest carbon stocks and sinks (CSSs) have been widely estimated using climate classification tables and linear regression (LR) models with common independent variables (IVs) such as the average diameter at breast height (DBH) of stems and root shoot ratio. However, this approach is relatively ineffective when the explanatory power of IVs is lower than that of unobservable variables. Various environmental and anthropogenic factors affect target variables that cause the correlation between them to be chaotic. Here, we designed a knife set (KS) approach combining LR models and the wandering through random forests (WTF) algorithm and applied it in a specific case of Phyllostachys edulis (Carrière) J. Houz. (P. edulis) forests, which have an irregular relationship between their belowground carbon (BGC) stocks and average DBH. We then validated the KS approach performed by cluster computing to estimate the aboveground carbon (AGC) and BGC stocks and the total net primary production (TNPP). The estimated CSSs were compared to the benchmark of the methodology that applied Tier 1 in the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories via 10-fold cross validation, and the KS approach significantly increased precision and accuracy of estimations. Our approach provides general insights to accurately estimate forest CSSs relying on evidence-based field data, even if some target variables are divergent in specific forest types. We also pointed out the reason why current fancy models containing machine learning (ML) or deep learning algorithms are not effective in predicting the target variables of certain chaotic systems is perhaps that the total explanatory power of observable variables is less than that of the total unobservable variables. Quantifying unobservable variables into observable variables is a linchpin of future works related to chaotic system estimation." @default.
- W4313367823 created "2023-01-06" @default.
- W4313367823 creator A5000412780 @default.
- W4313367823 creator A5027607505 @default.
- W4313367823 creator A5031082706 @default.
- W4313367823 creator A5044424799 @default.
- W4313367823 creator A5059600068 @default.
- W4313367823 creator A5060401126 @default.
- W4313367823 creator A5066547001 @default.
- W4313367823 creator A5089966147 @default.
- W4313367823 creator A5090908099 @default.
- W4313367823 date "2023-03-01" @default.
- W4313367823 modified "2023-10-16" @default.
- W4313367823 title "Estimating divergent forest carbon stocks and sinks via a knife set approach" @default.
- W4313367823 cites W1568275358 @default.
- W4313367823 cites W1747946088 @default.
- W4313367823 cites W1999169041 @default.
- W4313367823 cites W2010827860 @default.
- W4313367823 cites W2011382982 @default.
- W4313367823 cites W2014451925 @default.
- W4313367823 cites W2017937616 @default.
- W4313367823 cites W2023021640 @default.
- W4313367823 cites W2027099135 @default.
- W4313367823 cites W2033275656 @default.
- W4313367823 cites W2040870580 @default.
- W4313367823 cites W2052811137 @default.
- W4313367823 cites W2067713319 @default.
- W4313367823 cites W2082267987 @default.
- W4313367823 cites W2094876857 @default.
- W4313367823 cites W2096555119 @default.
- W4313367823 cites W2107429720 @default.
- W4313367823 cites W2127393530 @default.
- W4313367823 cites W2128452874 @default.
- W4313367823 cites W2166135450 @default.
- W4313367823 cites W2170563526 @default.
- W4313367823 cites W2257979135 @default.
- W4313367823 cites W2294798173 @default.
- W4313367823 cites W2329542950 @default.
- W4313367823 cites W2599623613 @default.
- W4313367823 cites W2610590216 @default.
- W4313367823 cites W2744161651 @default.
- W4313367823 cites W2752601554 @default.
- W4313367823 cites W2766447205 @default.
- W4313367823 cites W2790860706 @default.
- W4313367823 cites W2805419784 @default.
- W4313367823 cites W2911964244 @default.
- W4313367823 cites W2963277112 @default.
- W4313367823 cites W2963318618 @default.
- W4313367823 cites W2963518130 @default.
- W4313367823 cites W2998043344 @default.
- W4313367823 cites W3001232637 @default.
- W4313367823 cites W3010899098 @default.
- W4313367823 cites W3023272737 @default.
- W4313367823 cites W3088138537 @default.
- W4313367823 cites W3104062940 @default.
- W4313367823 cites W4239510810 @default.
- W4313367823 doi "https://doi.org/10.1016/j.jenvman.2022.117114" @default.
- W4313367823 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36586368" @default.
- W4313367823 hasPublicationYear "2023" @default.
- W4313367823 type Work @default.
- W4313367823 citedByCount "2" @default.
- W4313367823 countsByYear W43133678232023 @default.
- W4313367823 crossrefType "journal-article" @default.
- W4313367823 hasAuthorship W4313367823A5000412780 @default.
- W4313367823 hasAuthorship W4313367823A5027607505 @default.
- W4313367823 hasAuthorship W4313367823A5031082706 @default.
- W4313367823 hasAuthorship W4313367823A5044424799 @default.
- W4313367823 hasAuthorship W4313367823A5059600068 @default.
- W4313367823 hasAuthorship W4313367823A5060401126 @default.
- W4313367823 hasAuthorship W4313367823A5066547001 @default.
- W4313367823 hasAuthorship W4313367823A5089966147 @default.
- W4313367823 hasAuthorship W4313367823A5090908099 @default.
- W4313367823 hasConcept C105795698 @default.
- W4313367823 hasConcept C119857082 @default.
- W4313367823 hasConcept C132651083 @default.
- W4313367823 hasConcept C149677717 @default.
- W4313367823 hasConcept C149782125 @default.
- W4313367823 hasConcept C169258074 @default.
- W4313367823 hasConcept C18903297 @default.
- W4313367823 hasConcept C22884784 @default.
- W4313367823 hasConcept C2780695315 @default.
- W4313367823 hasConcept C33923547 @default.
- W4313367823 hasConcept C39432304 @default.
- W4313367823 hasConcept C41008148 @default.
- W4313367823 hasConcept C47737302 @default.
- W4313367823 hasConcept C530467964 @default.
- W4313367823 hasConcept C86803240 @default.
- W4313367823 hasConceptScore W4313367823C105795698 @default.
- W4313367823 hasConceptScore W4313367823C119857082 @default.
- W4313367823 hasConceptScore W4313367823C132651083 @default.
- W4313367823 hasConceptScore W4313367823C149677717 @default.
- W4313367823 hasConceptScore W4313367823C149782125 @default.
- W4313367823 hasConceptScore W4313367823C169258074 @default.
- W4313367823 hasConceptScore W4313367823C18903297 @default.
- W4313367823 hasConceptScore W4313367823C22884784 @default.
- W4313367823 hasConceptScore W4313367823C2780695315 @default.
- W4313367823 hasConceptScore W4313367823C33923547 @default.
- W4313367823 hasConceptScore W4313367823C39432304 @default.