Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313367935> ?p ?o ?g. }
- W4313367935 endingPage "116318" @default.
- W4313367935 startingPage "116318" @default.
- W4313367935 abstract "Global climate change is expected to cause both increased and reduced precipitation in the next decades, especially in drylands with semi-arid climates. Biocrusts are an essential soil surface cover in global drylands, and they strongly influence most soil properties and support fundamental ecosystem functions, especially soil carbon (C) cycling. Nevertheless, the response patterns and mechanisms of biocrust respiration rate (Rs) to precipitation changes remain uncertain under changing semi-arid climates. In our study, a field experiment for biocrusts with natural precipitation (CK) and six levels of precipitation manipulation (–50 %, –30 %, –10 %, +10 %, +30 %, and +50 % of CK) were conducted from 2019 to 2021 in a semi-arid climate region of the northern Chinese Loess Plateau. We continuously measured the biocrust Rs of all the treatments in the growing seasons, and the fundamental properties of biocrusts and their temperature and water content at 5 cm depth were also measured. Our results showed that the increased precipitation inhibited biocrust Rs, while moderately reduced precipitation stimulated biocrust Rs. As compared with the CK, the precipitation manipulations of +10 %, +30 %, and +50 % decreased biocrust Rs by 8.9 %, 15.3 %, and 22.1 %, respectively, while the treatments of –10 % and –30 % increased biocrust Rs by 25.5 % and 8.0 %, respectively. However, the precipitation manipulation of –50 % suppressed biocrust Rs by 19.3 %. More importantly, the responses of biocrust Rs to precipitation changes were negative and asymmetric, which indicated a higher sensitivity of biocrust Rs to reduced precipitation in comparison to increased precipitation. Moreover, the increased precipitation (+10 % to + 50 %) raised soil water content (by 29.7 %–55.0 %), moss biomass (by 12.5 %–50.0 %), and organic matter content (by 11.3 %–12.4 %). In contrast, the reduced precipitation (–10 % to –30 %) decreased soil water content (by 5.2 %–17.6 %) and moss biomass (by 12.5 %–25.8 %). The structural equation modeling analysis showed that the responses of biocrust Rs to precipitation manipulation were mainly and directly influenced by soil temperature and biocrust properties. Although soil water content did not have a direct significant effect on biocrust Rs, it indirectly influenced biocrust Rs by affecting the fundamental properties of soil and biocrusts. Consequently, the changed soil properties and biocrust characteristics caused by precipitation shifts aggravated the negative responses of biocrust Rs to precipitation manipulation. Our findings emphasize that biocrusts have a negative and asymmetric response of Rs to precipitation changes, implying that the intensified precipitation variation in semi-arid regions caused by global climate change in future may positively affect the stability of soil C stocks contributed by biocrusts and thus reduce soil C efflux in drylands." @default.
- W4313367935 created "2023-01-06" @default.
- W4313367935 creator A5001111343 @default.
- W4313367935 creator A5015855297 @default.
- W4313367935 creator A5045821532 @default.
- W4313367935 creator A5014793734 @default.
- W4313367935 date "2023-02-01" @default.
- W4313367935 modified "2023-10-10" @default.
- W4313367935 title "Asymmetric responses of biocrust respiration to precipitation manipulation under a changing semiarid climate" @default.
- W4313367935 cites W1642724957 @default.
- W4313367935 cites W1965460120 @default.
- W4313367935 cites W1969764600 @default.
- W4313367935 cites W1973675330 @default.
- W4313367935 cites W1974017187 @default.
- W4313367935 cites W1978815659 @default.
- W4313367935 cites W1984099010 @default.
- W4313367935 cites W2002044452 @default.
- W4313367935 cites W2005919834 @default.
- W4313367935 cites W2012994935 @default.
- W4313367935 cites W2014105709 @default.
- W4313367935 cites W2020922976 @default.
- W4313367935 cites W2023412617 @default.
- W4313367935 cites W2031111921 @default.
- W4313367935 cites W2043072753 @default.
- W4313367935 cites W2052333532 @default.
- W4313367935 cites W2052420800 @default.
- W4313367935 cites W2063923547 @default.
- W4313367935 cites W2084205369 @default.
- W4313367935 cites W2089972713 @default.
- W4313367935 cites W2091672286 @default.
- W4313367935 cites W2095396821 @default.
- W4313367935 cites W2096386740 @default.
- W4313367935 cites W2100051617 @default.
- W4313367935 cites W2107893233 @default.
- W4313367935 cites W2109664546 @default.
- W4313367935 cites W2111890582 @default.
- W4313367935 cites W2117703295 @default.
- W4313367935 cites W2119797678 @default.
- W4313367935 cites W2122346878 @default.
- W4313367935 cites W2130683592 @default.
- W4313367935 cites W2134501245 @default.
- W4313367935 cites W2138456069 @default.
- W4313367935 cites W2140483741 @default.
- W4313367935 cites W2142793107 @default.
- W4313367935 cites W2153341659 @default.
- W4313367935 cites W2157608473 @default.
- W4313367935 cites W2165380978 @default.
- W4313367935 cites W2191482140 @default.
- W4313367935 cites W2305481445 @default.
- W4313367935 cites W2325834236 @default.
- W4313367935 cites W2339456589 @default.
- W4313367935 cites W2552986419 @default.
- W4313367935 cites W2560897653 @default.
- W4313367935 cites W2572814116 @default.
- W4313367935 cites W2580026137 @default.
- W4313367935 cites W2596665508 @default.
- W4313367935 cites W2597675998 @default.
- W4313367935 cites W2605444306 @default.
- W4313367935 cites W2617178369 @default.
- W4313367935 cites W2749158193 @default.
- W4313367935 cites W2761442298 @default.
- W4313367935 cites W2765788703 @default.
- W4313367935 cites W2783678217 @default.
- W4313367935 cites W2789763523 @default.
- W4313367935 cites W2803986909 @default.
- W4313367935 cites W2805790857 @default.
- W4313367935 cites W2901542143 @default.
- W4313367935 cites W2928585335 @default.
- W4313367935 cites W2933187433 @default.
- W4313367935 cites W2966185623 @default.
- W4313367935 cites W3035990782 @default.
- W4313367935 cites W3041455703 @default.
- W4313367935 cites W3042094535 @default.
- W4313367935 cites W3045602995 @default.
- W4313367935 cites W3063888188 @default.
- W4313367935 cites W3081151572 @default.
- W4313367935 cites W3129116016 @default.
- W4313367935 cites W3155244903 @default.
- W4313367935 cites W3170129786 @default.
- W4313367935 cites W3173650721 @default.
- W4313367935 cites W3201399304 @default.
- W4313367935 cites W4283779189 @default.
- W4313367935 cites W4285081762 @default.
- W4313367935 doi "https://doi.org/10.1016/j.geoderma.2022.116318" @default.
- W4313367935 hasPublicationYear "2023" @default.
- W4313367935 type Work @default.
- W4313367935 citedByCount "3" @default.
- W4313367935 countsByYear W43133679352023 @default.
- W4313367935 crossrefType "journal-article" @default.
- W4313367935 hasAuthorship W4313367935A5001111343 @default.
- W4313367935 hasAuthorship W4313367935A5014793734 @default.
- W4313367935 hasAuthorship W4313367935A5015855297 @default.
- W4313367935 hasAuthorship W4313367935A5045821532 @default.
- W4313367935 hasBestOaLocation W43133679351 @default.
- W4313367935 hasConcept C107054158 @default.
- W4313367935 hasConcept C110872660 @default.
- W4313367935 hasConcept C127313418 @default.
- W4313367935 hasConcept C132651083 @default.