Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313368260> ?p ?o ?g. }
- W4313368260 endingPage "126561" @default.
- W4313368260 startingPage "126561" @default.
- W4313368260 abstract "Accurate and stable power load prediction is useful for electric power enterprises. However, accurate and stable power load prediction becomes very difficult. In order to improve prediction accuracy and stability, an improved hybrid model based on variational mode decomposition (VMD) optimized by the cuckoo search algorithm (CSA), seasonal autoregressive integrated moving average (SARIMA) and deep belief network (DBN) is put foreword for short term power load prediction. First, the original power load is decomposed into several regular and random sub-series by VMD-CSA. Second, the regular sub-series is predicted by SARIMA, and the random sub-series is predicted by DBN. Third, the final prediction result is the sum of each sub-series prediction result. The validity of the proposed model is verified by using power load from three different markets. Experimental results show that the proposed model has more accurate and stable results." @default.
- W4313368260 created "2023-01-06" @default.
- W4313368260 creator A5005944481 @default.
- W4313368260 creator A5034653760 @default.
- W4313368260 creator A5083711673 @default.
- W4313368260 creator A5085617732 @default.
- W4313368260 date "2023-04-01" @default.
- W4313368260 modified "2023-10-18" @default.
- W4313368260 title "An improved hybrid model for short term power load prediction" @default.
- W4313368260 cites W1793209788 @default.
- W4313368260 cites W1978429571 @default.
- W4313368260 cites W1987938889 @default.
- W4313368260 cites W1991151501 @default.
- W4313368260 cites W2000982976 @default.
- W4313368260 cites W2007898191 @default.
- W4313368260 cites W2008406084 @default.
- W4313368260 cites W2059698575 @default.
- W4313368260 cites W2070190840 @default.
- W4313368260 cites W2136922672 @default.
- W4313368260 cites W2156110830 @default.
- W4313368260 cites W2268377817 @default.
- W4313368260 cites W2292129691 @default.
- W4313368260 cites W2297334139 @default.
- W4313368260 cites W2484938157 @default.
- W4313368260 cites W2549421055 @default.
- W4313368260 cites W2551528201 @default.
- W4313368260 cites W2571217044 @default.
- W4313368260 cites W2573526403 @default.
- W4313368260 cites W2619505338 @default.
- W4313368260 cites W2739283086 @default.
- W4313368260 cites W2742472784 @default.
- W4313368260 cites W2747580724 @default.
- W4313368260 cites W2752072929 @default.
- W4313368260 cites W2780486892 @default.
- W4313368260 cites W2792344217 @default.
- W4313368260 cites W2804609327 @default.
- W4313368260 cites W2807831972 @default.
- W4313368260 cites W2889833410 @default.
- W4313368260 cites W3172730717 @default.
- W4313368260 cites W4288032528 @default.
- W4313368260 doi "https://doi.org/10.1016/j.energy.2022.126561" @default.
- W4313368260 hasPublicationYear "2023" @default.
- W4313368260 type Work @default.
- W4313368260 citedByCount "4" @default.
- W4313368260 countsByYear W43133682602023 @default.
- W4313368260 crossrefType "journal-article" @default.
- W4313368260 hasAuthorship W4313368260A5005944481 @default.
- W4313368260 hasAuthorship W4313368260A5034653760 @default.
- W4313368260 hasAuthorship W4313368260A5083711673 @default.
- W4313368260 hasAuthorship W4313368260A5085617732 @default.
- W4313368260 hasConcept C105795698 @default.
- W4313368260 hasConcept C112972136 @default.
- W4313368260 hasConcept C11413529 @default.
- W4313368260 hasConcept C117241572 @default.
- W4313368260 hasConcept C119857082 @default.
- W4313368260 hasConcept C121332964 @default.
- W4313368260 hasConcept C143724316 @default.
- W4313368260 hasConcept C151406439 @default.
- W4313368260 hasConcept C151730666 @default.
- W4313368260 hasConcept C154945302 @default.
- W4313368260 hasConcept C159877910 @default.
- W4313368260 hasConcept C163258240 @default.
- W4313368260 hasConcept C24338571 @default.
- W4313368260 hasConcept C2775924081 @default.
- W4313368260 hasConcept C33923547 @default.
- W4313368260 hasConcept C41008148 @default.
- W4313368260 hasConcept C47446073 @default.
- W4313368260 hasConcept C50644808 @default.
- W4313368260 hasConcept C61797465 @default.
- W4313368260 hasConcept C62520636 @default.
- W4313368260 hasConcept C85617194 @default.
- W4313368260 hasConcept C86803240 @default.
- W4313368260 hasConcept C89227174 @default.
- W4313368260 hasConcept C97385483 @default.
- W4313368260 hasConceptScore W4313368260C105795698 @default.
- W4313368260 hasConceptScore W4313368260C112972136 @default.
- W4313368260 hasConceptScore W4313368260C11413529 @default.
- W4313368260 hasConceptScore W4313368260C117241572 @default.
- W4313368260 hasConceptScore W4313368260C119857082 @default.
- W4313368260 hasConceptScore W4313368260C121332964 @default.
- W4313368260 hasConceptScore W4313368260C143724316 @default.
- W4313368260 hasConceptScore W4313368260C151406439 @default.
- W4313368260 hasConceptScore W4313368260C151730666 @default.
- W4313368260 hasConceptScore W4313368260C154945302 @default.
- W4313368260 hasConceptScore W4313368260C159877910 @default.
- W4313368260 hasConceptScore W4313368260C163258240 @default.
- W4313368260 hasConceptScore W4313368260C24338571 @default.
- W4313368260 hasConceptScore W4313368260C2775924081 @default.
- W4313368260 hasConceptScore W4313368260C33923547 @default.
- W4313368260 hasConceptScore W4313368260C41008148 @default.
- W4313368260 hasConceptScore W4313368260C47446073 @default.
- W4313368260 hasConceptScore W4313368260C50644808 @default.
- W4313368260 hasConceptScore W4313368260C61797465 @default.
- W4313368260 hasConceptScore W4313368260C62520636 @default.
- W4313368260 hasConceptScore W4313368260C85617194 @default.
- W4313368260 hasConceptScore W4313368260C86803240 @default.
- W4313368260 hasConceptScore W4313368260C89227174 @default.
- W4313368260 hasConceptScore W4313368260C97385483 @default.