Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313372191> ?p ?o ?g. }
- W4313372191 endingPage "713" @default.
- W4313372191 startingPage "704" @default.
- W4313372191 abstract "The use of artificial intelligence is rapidly increasing in medicine to support clinical decision making mostly through diagnostic and prediction models. Such models derive from huge databases (big data) including a large variety of health-related individual patient data (input) and the corresponding diagnosis and/or outcome (labels). Various types of algorithms (e.g. neural networks) based on powerful computational ability (machine), allow to detect the relationship between input and labels (learning). More complex algorithms, like recurrent neural network can learn from previous as well as actual input (deep learning) and are used for more complex tasks like imaging analysis and personalized (bespoke) medicine. The prompt availability of big data makes that artificial intelligence can provide rapid answers to questions that would require years of traditional clinical research. It may therefore be a key tool to overcome several major gaps in the model of advanced chronic liver disease, mostly transition from mild to clinically significant portal hypertension, the impact of acute decompensation and the role of further decompensation and treatment efficiency. However, several limitations of artificial intelligence should be overcome before its application in clinical practice. Assessment of the risk of bias, understandability of the black boxes developing the models and models' validation are the most important areas deserving clarification for artificial intelligence to be widely accepted from physicians and patients." @default.
- W4313372191 created "2023-01-06" @default.
- W4313372191 creator A5032054310 @default.
- W4313372191 creator A5039945053 @default.
- W4313372191 creator A5051991110 @default.
- W4313372191 creator A5085002581 @default.
- W4313372191 date "2023-06-01" @default.
- W4313372191 modified "2023-10-12" @default.
- W4313372191 title "The potential role of machine learning in modelling advanced chronic liver disease" @default.
- W4313372191 cites W1602160603 @default.
- W4313372191 cites W1964051982 @default.
- W4313372191 cites W1969298821 @default.
- W4313372191 cites W1979124801 @default.
- W4313372191 cites W1994682257 @default.
- W4313372191 cites W1997192661 @default.
- W4313372191 cites W2001137775 @default.
- W4313372191 cites W2007670274 @default.
- W4313372191 cites W2009790391 @default.
- W4313372191 cites W2023149416 @default.
- W4313372191 cites W2033260776 @default.
- W4313372191 cites W2050232332 @default.
- W4313372191 cites W2069243984 @default.
- W4313372191 cites W2078294406 @default.
- W4313372191 cites W2090738619 @default.
- W4313372191 cites W2091600198 @default.
- W4313372191 cites W2099295251 @default.
- W4313372191 cites W2136085913 @default.
- W4313372191 cites W2159845343 @default.
- W4313372191 cites W2162322495 @default.
- W4313372191 cites W2353243677 @default.
- W4313372191 cites W2406748516 @default.
- W4313372191 cites W2514899465 @default.
- W4313372191 cites W2519113656 @default.
- W4313372191 cites W2523461514 @default.
- W4313372191 cites W2539256258 @default.
- W4313372191 cites W2566427467 @default.
- W4313372191 cites W2568655618 @default.
- W4313372191 cites W2664267452 @default.
- W4313372191 cites W2738975713 @default.
- W4313372191 cites W2767350488 @default.
- W4313372191 cites W2782296852 @default.
- W4313372191 cites W2789894922 @default.
- W4313372191 cites W2907554860 @default.
- W4313372191 cites W2922822790 @default.
- W4313372191 cites W2934399013 @default.
- W4313372191 cites W2948948667 @default.
- W4313372191 cites W2973985440 @default.
- W4313372191 cites W2978294504 @default.
- W4313372191 cites W2983033912 @default.
- W4313372191 cites W2988716771 @default.
- W4313372191 cites W2994958466 @default.
- W4313372191 cites W3012265814 @default.
- W4313372191 cites W3027747864 @default.
- W4313372191 cites W3037480398 @default.
- W4313372191 cites W3043538464 @default.
- W4313372191 cites W3082662855 @default.
- W4313372191 cites W3093650933 @default.
- W4313372191 cites W3097224450 @default.
- W4313372191 cites W3107529120 @default.
- W4313372191 cites W3111137164 @default.
- W4313372191 cites W3119555742 @default.
- W4313372191 cites W3127206578 @default.
- W4313372191 cites W3133814806 @default.
- W4313372191 cites W3137492611 @default.
- W4313372191 cites W3165072581 @default.
- W4313372191 cites W3174905293 @default.
- W4313372191 cites W3177220749 @default.
- W4313372191 cites W3187306159 @default.
- W4313372191 cites W3202919466 @default.
- W4313372191 cites W4200473175 @default.
- W4313372191 cites W4213208716 @default.
- W4313372191 cites W4220877756 @default.
- W4313372191 cites W4232832199 @default.
- W4313372191 cites W4280534293 @default.
- W4313372191 doi "https://doi.org/10.1016/j.dld.2022.12.002" @default.
- W4313372191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36586769" @default.
- W4313372191 hasPublicationYear "2023" @default.
- W4313372191 type Work @default.
- W4313372191 citedByCount "0" @default.
- W4313372191 crossrefType "journal-article" @default.
- W4313372191 hasAuthorship W4313372191A5032054310 @default.
- W4313372191 hasAuthorship W4313372191A5039945053 @default.
- W4313372191 hasAuthorship W4313372191A5051991110 @default.
- W4313372191 hasAuthorship W4313372191A5085002581 @default.
- W4313372191 hasBestOaLocation W43133721911 @default.
- W4313372191 hasConcept C108583219 @default.
- W4313372191 hasConcept C119857082 @default.
- W4313372191 hasConcept C124101348 @default.
- W4313372191 hasConcept C154945302 @default.
- W4313372191 hasConcept C164705383 @default.
- W4313372191 hasConcept C17744445 @default.
- W4313372191 hasConcept C199539241 @default.
- W4313372191 hasConcept C2522767166 @default.
- W4313372191 hasConcept C2778721985 @default.
- W4313372191 hasConcept C41008148 @default.
- W4313372191 hasConcept C44210515 @default.
- W4313372191 hasConcept C50644808 @default.
- W4313372191 hasConcept C71924100 @default.