Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313372297> ?p ?o ?g. }
- W4313372297 abstract "This paper considers the design of structures made of engineered materials, accounting for uncertainty in material properties. We present a topology optimization approach that optimizes the structural shape and topology at the macroscale assuming design-independent uncertain microstructures. The structural geometry at the macroscale is described by an explicit level set approach, and the macroscopic structural response is predicted by the eXtended Finite Element Method (XFEM). We describe the microscopic layout by either an analytic geometric model with uncertain parameters or a level-cut from a Gaussian random field. The macroscale properties of the microstructured material are predicted by homogenization. Considering the large number of possible microscale configurations, one of the main challenges of solving such topology optimization problems is the computational cost of estimating the statistical moments of the cost and constraint functions and their gradients with respect to the design variables. Methods for predicting these moments, such as Monte Carlo sampling, and Taylor series and polynomial chaos expansions often require a large number of random samples resulting in an impractical computation. To reduce this cost, we propose an approach wherein, at every design iteration, we only use a small number of microstructure configurations to generate an independent, stochastic approximation of the gradients. These gradients are then used either with a gradient descent algorithm, namely Adaptive Moment (Adam), or the globally convergent method of moving asymptotes (GCMMA). Three numerical examples from structural mechanics are used to show that the proposed approach provides a computationally efficient way for macroscale topology optimization in the presence of microstructural uncertainty and enables the designers to consider a new class of problems that are out of reach today with conventional tools." @default.
- W4313372297 created "2023-01-06" @default.
- W4313372297 creator A5005638433 @default.
- W4313372297 creator A5084828592 @default.
- W4313372297 creator A5011838459 @default.
- W4313372297 date "2022-12-30" @default.
- W4313372297 modified "2023-09-26" @default.
- W4313372297 title "Topology optimization under microscale uncertainty using stochastic gradients" @default.
- W4313372297 cites W1976805916 @default.
- W4313372297 cites W1989201748 @default.
- W4313372297 cites W1989504059 @default.
- W4313372297 cites W1993377828 @default.
- W4313372297 cites W1993481701 @default.
- W4313372297 cites W1999506541 @default.
- W4313372297 cites W2006848930 @default.
- W4313372297 cites W2018882652 @default.
- W4313372297 cites W2020152794 @default.
- W4313372297 cites W2021795136 @default.
- W4313372297 cites W2033113414 @default.
- W4313372297 cites W2033143900 @default.
- W4313372297 cites W2034222383 @default.
- W4313372297 cites W2042016018 @default.
- W4313372297 cites W2048399845 @default.
- W4313372297 cites W2048474719 @default.
- W4313372297 cites W2048546972 @default.
- W4313372297 cites W2053724324 @default.
- W4313372297 cites W2056558085 @default.
- W4313372297 cites W2069615135 @default.
- W4313372297 cites W2069697210 @default.
- W4313372297 cites W2072954894 @default.
- W4313372297 cites W2074647935 @default.
- W4313372297 cites W2076575963 @default.
- W4313372297 cites W2077798044 @default.
- W4313372297 cites W2079294419 @default.
- W4313372297 cites W2079423956 @default.
- W4313372297 cites W2079496841 @default.
- W4313372297 cites W2084417257 @default.
- W4313372297 cites W2092668092 @default.
- W4313372297 cites W2095216523 @default.
- W4313372297 cites W2096105657 @default.
- W4313372297 cites W2107376855 @default.
- W4313372297 cites W2110677213 @default.
- W4313372297 cites W2113127808 @default.
- W4313372297 cites W2121229334 @default.
- W4313372297 cites W2146674345 @default.
- W4313372297 cites W2153245297 @default.
- W4313372297 cites W2165084730 @default.
- W4313372297 cites W2220999736 @default.
- W4313372297 cites W2234380998 @default.
- W4313372297 cites W2287154747 @default.
- W4313372297 cites W2316932989 @default.
- W4313372297 cites W2326690878 @default.
- W4313372297 cites W2334355993 @default.
- W4313372297 cites W2340937978 @default.
- W4313372297 cites W2465643060 @default.
- W4313372297 cites W2564812982 @default.
- W4313372297 cites W2566453435 @default.
- W4313372297 cites W2579889809 @default.
- W4313372297 cites W2738397520 @default.
- W4313372297 cites W2789606413 @default.
- W4313372297 cites W2814530545 @default.
- W4313372297 cites W2888309181 @default.
- W4313372297 cites W2900418236 @default.
- W4313372297 cites W2904619063 @default.
- W4313372297 cites W2963433607 @default.
- W4313372297 cites W2979513045 @default.
- W4313372297 cites W3004492923 @default.
- W4313372297 cites W3006850770 @default.
- W4313372297 cites W3008811907 @default.
- W4313372297 cites W3019230803 @default.
- W4313372297 cites W3047494561 @default.
- W4313372297 cites W3089040801 @default.
- W4313372297 cites W3137500345 @default.
- W4313372297 cites W3185193907 @default.
- W4313372297 cites W3202303715 @default.
- W4313372297 cites W4361866863 @default.
- W4313372297 cites W4379779317 @default.
- W4313372297 cites W65522538 @default.
- W4313372297 doi "https://doi.org/10.1007/s00158-022-03417-4" @default.
- W4313372297 hasPublicationYear "2022" @default.
- W4313372297 type Work @default.
- W4313372297 citedByCount "0" @default.
- W4313372297 crossrefType "journal-article" @default.
- W4313372297 hasAuthorship W4313372297A5005638433 @default.
- W4313372297 hasAuthorship W4313372297A5011838459 @default.
- W4313372297 hasAuthorship W4313372297A5084828592 @default.
- W4313372297 hasBestOaLocation W43133722972 @default.
- W4313372297 hasConcept C105795698 @default.
- W4313372297 hasConcept C11413529 @default.
- W4313372297 hasConcept C114614502 @default.
- W4313372297 hasConcept C126255220 @default.
- W4313372297 hasConcept C127413603 @default.
- W4313372297 hasConcept C130217890 @default.
- W4313372297 hasConcept C135628077 @default.
- W4313372297 hasConcept C145420912 @default.
- W4313372297 hasConcept C179428855 @default.
- W4313372297 hasConcept C184720557 @default.
- W4313372297 hasConcept C18903297 @default.
- W4313372297 hasConcept C189216461 @default.
- W4313372297 hasConcept C194387892 @default.