Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313372350> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313372350 endingPage "493" @default.
- W4313372350 startingPage "433" @default.
- W4313372350 abstract "This chapter draws on the earliest extant ChineseChina [Chinese] mathematical sourcesMathematical text [mathematical tablet, mathematical manuscript, mathematical classic, mathematical work, mathematical source] to address the history of the executionHistory of the execution (of an operation) [historicity of the execution of operations] of divisionDivisionexecution of division. The sources are of two kinds: third- and second-century manuscripts and classics, completed from the first century CE onwards. Chemla argues that the manuscripts and part of the earliest classic (The Gnomon of the Zhou [Dynasty]) share a way of prescribing division with the term chu 除, which, when used alone in these documents, means subtraction 除subtraction, orRepeated subtraction repeated subtraction 除repeated subtraction, with the intention of finding the remainder. These expressions using chu to prescribe divisions also refer to repeated subtractions, each yielding the remainder of the dividendDividend, and also a unit in the quotient that the expressions make clear. The core execution of division to which these documents attest has the following specificities: Dividend and divisor, being both measurement valuesMeasurement value, are transformed into decimal expansionsDecimaldecimal expansion without measurement unitsUnit of Measurement [measurement unit]. Throughout the repeated subtractionsRepeated subtraction, neither the value, nor the order of magnitude of the divisor change. The divisor serves as a pattern to detach from the remainder of the dividend parts that are transformed into other units, thereby yielding the quotient as a sequence of integral numbers of successive measurement unitsUnit of Measurement [measurement unit]. Chemla argues that at the time, no place-value system was used. In brief, the earliest use of the term chu is correlated with an execution of divisionDivisionexecution of division. This situation, Chemla argues, changes radically in the later Classics. There, chu, seldom used to refer to subtraction, is regularly employed alone to prescribe division. This terminological change meshes with a change in the execution. Now, the decimal expansionsDecimaldecimal expansion into which dividendDividend and divisor are transformed appear to be written using rodsCalculating rods (筭 ) [rods, counting rods, rods for computation, counting-rods] according to a decimal place-value systemPlace-value numeration system [Place-value systems, Place-value numeration systems, place-value number system, positional system]decimal place-value numeration system [decimal place-value system, decimal place-value notation]. The execution of divisionDivisionexecution of division yields a quotient decimal orderExecution (of computation, of mathematical operations, of arithmetical operations) [Execution of arithmetical operations, Execution of operations, Execution of an operation, Executing, Execute]order of execution by decimal order, that is, digitDigit by digit. In this new execution, the divisor is shifted backwards and forwards to correspond to the dividend for the production of units attached to a given power of tenPowers of ten. In conclusion, Chemla suggests the radical change in the meaning of chu is correlated with changes in both the execution of divisionDivisionexecution of division, and the numeration systems used. The author decomposes the execution of a division into four types of phasePhase (in an execution). Phase 1 transforms dividendDividend and divisor into decimal expansions. Phases 2 and 3, respectively, yield units in the quotient, and adjust the dividend for the production of the subsequent units. Phase 4 yields the fractional part of the result. This decomposition highlights that several parts of procedures in the manuscripts deal with Phases 2–4. It also enables us to interpret procedures in the manuscripts as devoted to Phase 1. These procedures show that the actors’ aim was to shape decimal expansionsDecimaldecimal expansion as short as possible for dividendDividend and divisor. The Classics attest to key transformations for all these phasesPhase (in an execution). For Phase 1, the Classic The Nine Chapters, completed in the first century CE, attests to a theorization that relates Phase 1 to other procedures, on the basis of common fundamental operationsOperation (on integers)fundamental operation, designated with highly theoretical words. The Nine Chapters further attests to the completion of the change for Phases 2 and 3, with the promotion of the place-value system and a new execution of divisionDivisionexecution of division. It also shows another type of theorization had taken root in the new execution of division, since it displaysDisplay [displayed] the shaping of a set of operationsStructure of a set of operations [set of operations with a highly refined structure] with a highly refined structure, in which chu plays a central part. This developmentEvolution (linear) [evolutionary, improvement, development] relates with the shaping of a mathematical practicePracticemathematical practice [mathematical practices] that grants a central role to positions on the calculating surfaceCalculating surface. In conclusion, the history of the executionHistory of the execution (of an operation) [historicity of the execution of operations] of divisionDivisionexecution of division cannot be severed from a network of mathematical issues and practices in which it is embedded." @default.
- W4313372350 created "2023-01-06" @default.
- W4313372350 creator A5088734092 @default.
- W4313372350 date "2022-01-01" @default.
- W4313372350 modified "2023-09-30" @default.
- W4313372350 title "Working on and with Division in Early China, Third Century BCE—Seventh Century CE" @default.
- W4313372350 cites W1994437560 @default.
- W4313372350 cites W2052292689 @default.
- W4313372350 cites W2148375179 @default.
- W4313372350 cites W2404319841 @default.
- W4313372350 cites W2736444630 @default.
- W4313372350 cites W2761907887 @default.
- W4313372350 cites W3090888626 @default.
- W4313372350 cites W4250079636 @default.
- W4313372350 doi "https://doi.org/10.1007/978-3-030-98361-1_8" @default.
- W4313372350 hasPublicationYear "2022" @default.
- W4313372350 type Work @default.
- W4313372350 citedByCount "0" @default.
- W4313372350 crossrefType "book-chapter" @default.
- W4313372350 hasAuthorship W4313372350A5088734092 @default.
- W4313372350 hasBestOaLocation W43133723502 @default.
- W4313372350 hasConcept C105795698 @default.
- W4313372350 hasConcept C118615104 @default.
- W4313372350 hasConcept C178300618 @default.
- W4313372350 hasConcept C18903297 @default.
- W4313372350 hasConcept C199422724 @default.
- W4313372350 hasConcept C202444582 @default.
- W4313372350 hasConcept C203492994 @default.
- W4313372350 hasConcept C2776291640 @default.
- W4313372350 hasConcept C2778112365 @default.
- W4313372350 hasConcept C2778774319 @default.
- W4313372350 hasConcept C33923547 @default.
- W4313372350 hasConcept C39613435 @default.
- W4313372350 hasConcept C41008148 @default.
- W4313372350 hasConcept C54355233 @default.
- W4313372350 hasConcept C60798267 @default.
- W4313372350 hasConcept C65045869 @default.
- W4313372350 hasConcept C68060419 @default.
- W4313372350 hasConcept C74916050 @default.
- W4313372350 hasConcept C78458016 @default.
- W4313372350 hasConcept C86803240 @default.
- W4313372350 hasConcept C94375191 @default.
- W4313372350 hasConcept C95457728 @default.
- W4313372350 hasConceptScore W4313372350C105795698 @default.
- W4313372350 hasConceptScore W4313372350C118615104 @default.
- W4313372350 hasConceptScore W4313372350C178300618 @default.
- W4313372350 hasConceptScore W4313372350C18903297 @default.
- W4313372350 hasConceptScore W4313372350C199422724 @default.
- W4313372350 hasConceptScore W4313372350C202444582 @default.
- W4313372350 hasConceptScore W4313372350C203492994 @default.
- W4313372350 hasConceptScore W4313372350C2776291640 @default.
- W4313372350 hasConceptScore W4313372350C2778112365 @default.
- W4313372350 hasConceptScore W4313372350C2778774319 @default.
- W4313372350 hasConceptScore W4313372350C33923547 @default.
- W4313372350 hasConceptScore W4313372350C39613435 @default.
- W4313372350 hasConceptScore W4313372350C41008148 @default.
- W4313372350 hasConceptScore W4313372350C54355233 @default.
- W4313372350 hasConceptScore W4313372350C60798267 @default.
- W4313372350 hasConceptScore W4313372350C65045869 @default.
- W4313372350 hasConceptScore W4313372350C68060419 @default.
- W4313372350 hasConceptScore W4313372350C74916050 @default.
- W4313372350 hasConceptScore W4313372350C78458016 @default.
- W4313372350 hasConceptScore W4313372350C86803240 @default.
- W4313372350 hasConceptScore W4313372350C94375191 @default.
- W4313372350 hasConceptScore W4313372350C95457728 @default.
- W4313372350 hasLocation W43133723501 @default.
- W4313372350 hasLocation W43133723502 @default.
- W4313372350 hasLocation W43133723503 @default.
- W4313372350 hasOpenAccess W4313372350 @default.
- W4313372350 hasPrimaryLocation W43133723501 @default.
- W4313372350 hasRelatedWork W1965811650 @default.
- W4313372350 hasRelatedWork W2000843681 @default.
- W4313372350 hasRelatedWork W2037752989 @default.
- W4313372350 hasRelatedWork W2074995584 @default.
- W4313372350 hasRelatedWork W2897452817 @default.
- W4313372350 hasRelatedWork W4214822054 @default.
- W4313372350 hasRelatedWork W4308351151 @default.
- W4313372350 hasRelatedWork W4313372350 @default.
- W4313372350 hasRelatedWork W2189175587 @default.
- W4313372350 hasRelatedWork W3119536765 @default.
- W4313372350 isParatext "false" @default.
- W4313372350 isRetracted "false" @default.
- W4313372350 workType "book-chapter" @default.