Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313373551> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4313373551 endingPage "86.12" @default.
- W4313373551 startingPage "86.12" @default.
- W4313373551 abstract "Abstract Motivation Diagnosis of leukemia relies on accurate identification of leukemic cell populations. Flow cytometry (FCM) is a primary diagnostic assay routinely used in clinical practice. The assay workflows consist of multiple manual gating steps performed by technicians, followed by interpretation by hematopathologists. Challenges to this process include technical variability in manual gating, difficulty in identification of the atypical leukemic cells, and the growing number of antigens used for diagnosis. Methods Instead of conducting ad hoc analysis of individual samples, our proposed computational approach leverages preexisting clinical FCM data to improve robustness of the computational identification of leukemic cells. Instead of separating cell population identification and sample classification into two steps, our machine learning classification method optimizes them simultaneously, producing gating locations that are recognizable to hematopathologists. Results Our study consists of 10-color FCM data from blood or bone marrow samples of 129 random subjects for chronic lymphocytic leukemia (CLL) diagnosis. Our initial automated gating analysis rendered an accuracy of 89% matched the diagnosis of the hematopathologist. In the remaining cases with discrepant results, the misclassified CLL cells had atypical molecular phenotypes, making them difficult to identify. In our improved pipeline, we demonstrate that these atypical types of CLL cells can be clearly captured using a non-linear embedding dimensionality reduction step. Conclusion The results demonstrate the power of a novel computational analysis pipeline for improving the identification of aberrant leukemia cells for precision diagnosis." @default.
- W4313373551 created "2023-01-06" @default.
- W4313373551 creator A5034262562 @default.
- W4313373551 creator A5037336525 @default.
- W4313373551 creator A5041115571 @default.
- W4313373551 creator A5052462180 @default.
- W4313373551 creator A5052630735 @default.
- W4313373551 creator A5077460655 @default.
- W4313373551 creator A5079751653 @default.
- W4313373551 creator A5087644608 @default.
- W4313373551 date "2020-05-01" @default.
- W4313373551 modified "2023-09-27" @default.
- W4313373551 title "Novel computational analytics of clinical flow cytometry data identifies difficult-to-resolve leukemia cells for precision diagnosis" @default.
- W4313373551 doi "https://doi.org/10.4049/jimmunol.204.supp.86.12" @default.
- W4313373551 hasPublicationYear "2020" @default.
- W4313373551 type Work @default.
- W4313373551 citedByCount "0" @default.
- W4313373551 crossrefType "journal-article" @default.
- W4313373551 hasAuthorship W4313373551A5034262562 @default.
- W4313373551 hasAuthorship W4313373551A5037336525 @default.
- W4313373551 hasAuthorship W4313373551A5041115571 @default.
- W4313373551 hasAuthorship W4313373551A5052462180 @default.
- W4313373551 hasAuthorship W4313373551A5052630735 @default.
- W4313373551 hasAuthorship W4313373551A5077460655 @default.
- W4313373551 hasAuthorship W4313373551A5079751653 @default.
- W4313373551 hasAuthorship W4313373551A5087644608 @default.
- W4313373551 hasConcept C116834253 @default.
- W4313373551 hasConcept C124101348 @default.
- W4313373551 hasConcept C153180895 @default.
- W4313373551 hasConcept C154945302 @default.
- W4313373551 hasConcept C203014093 @default.
- W4313373551 hasConcept C2777938653 @default.
- W4313373551 hasConcept C2778461978 @default.
- W4313373551 hasConcept C2780339063 @default.
- W4313373551 hasConcept C2908647359 @default.
- W4313373551 hasConcept C41008148 @default.
- W4313373551 hasConcept C553184892 @default.
- W4313373551 hasConcept C59822182 @default.
- W4313373551 hasConcept C70721500 @default.
- W4313373551 hasConcept C71924100 @default.
- W4313373551 hasConcept C86803240 @default.
- W4313373551 hasConcept C99454951 @default.
- W4313373551 hasConceptScore W4313373551C116834253 @default.
- W4313373551 hasConceptScore W4313373551C124101348 @default.
- W4313373551 hasConceptScore W4313373551C153180895 @default.
- W4313373551 hasConceptScore W4313373551C154945302 @default.
- W4313373551 hasConceptScore W4313373551C203014093 @default.
- W4313373551 hasConceptScore W4313373551C2777938653 @default.
- W4313373551 hasConceptScore W4313373551C2778461978 @default.
- W4313373551 hasConceptScore W4313373551C2780339063 @default.
- W4313373551 hasConceptScore W4313373551C2908647359 @default.
- W4313373551 hasConceptScore W4313373551C41008148 @default.
- W4313373551 hasConceptScore W4313373551C553184892 @default.
- W4313373551 hasConceptScore W4313373551C59822182 @default.
- W4313373551 hasConceptScore W4313373551C70721500 @default.
- W4313373551 hasConceptScore W4313373551C71924100 @default.
- W4313373551 hasConceptScore W4313373551C86803240 @default.
- W4313373551 hasConceptScore W4313373551C99454951 @default.
- W4313373551 hasIssue "1_Supplement" @default.
- W4313373551 hasLocation W43133735511 @default.
- W4313373551 hasOpenAccess W4313373551 @default.
- W4313373551 hasPrimaryLocation W43133735511 @default.
- W4313373551 hasRelatedWork W1520888130 @default.
- W4313373551 hasRelatedWork W1979864757 @default.
- W4313373551 hasRelatedWork W2011187346 @default.
- W4313373551 hasRelatedWork W2013314719 @default.
- W4313373551 hasRelatedWork W2025463888 @default.
- W4313373551 hasRelatedWork W2359322268 @default.
- W4313373551 hasRelatedWork W2377424070 @default.
- W4313373551 hasRelatedWork W2524706783 @default.
- W4313373551 hasRelatedWork W2806170709 @default.
- W4313373551 hasRelatedWork W2131918003 @default.
- W4313373551 hasVolume "204" @default.
- W4313373551 isParatext "false" @default.
- W4313373551 isRetracted "false" @default.
- W4313373551 workType "article" @default.