Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313377512> ?p ?o ?g. }
- W4313377512 endingPage "112346" @default.
- W4313377512 startingPage "112346" @default.
- W4313377512 abstract "With the rapid development of industry, fault diagnosis plays a more and more important role in maintaining the health of equipment and ensuring the safe operation of equipment. Due to large-size monitoring data of equipment conditions, deep learning (DL) has been widely used in the fault diagnosis of rotating machinery. In the past few years, a large number of related solutions have been proposed. Although many related survey papers have been published, they lack a generalization of the issues and methods raised in existing research and applications. Therefore, this paper reviews recent research on DL-based intelligent fault diagnosis for rotating machinery. Based on deep learning models, this paper divides existing research into five categories: deep belief networks (DBN), autoencoders (AE), convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial networks (GAN). This paper introduces the basic principles of these mainstream solutions, discusses related applications, and summarizes the application features of various solutions. The main problems of existing DL-based intelligent fault diagnosis (IFD) research are summarized as small-size sample imbalance and transfer fault diagnosis. The future research trends and hotspots are pointed out. It is expected that this survey paper can help readers understand the current problems and existing solutions in DL-based rotating machinery fault diagnosis, and effectively carry out related research." @default.
- W4313377512 created "2023-01-06" @default.
- W4313377512 creator A5004368605 @default.
- W4313377512 creator A5006116691 @default.
- W4313377512 creator A5023273216 @default.
- W4313377512 creator A5052594325 @default.
- W4313377512 creator A5053545153 @default.
- W4313377512 creator A5079239707 @default.
- W4313377512 creator A5085115760 @default.
- W4313377512 date "2023-01-01" @default.
- W4313377512 modified "2023-10-10" @default.
- W4313377512 title "A review of the application of deep learning in intelligent fault diagnosis of rotating machinery" @default.
- W4313377512 cites W1498436455 @default.
- W4313377512 cites W2019505419 @default.
- W4313377512 cites W2025768430 @default.
- W4313377512 cites W2063922127 @default.
- W4313377512 cites W2064675550 @default.
- W4313377512 cites W2072936527 @default.
- W4313377512 cites W2076063813 @default.
- W4313377512 cites W2097117768 @default.
- W4313377512 cites W2136922672 @default.
- W4313377512 cites W2147800946 @default.
- W4313377512 cites W2184192902 @default.
- W4313377512 cites W2194775991 @default.
- W4313377512 cites W2404692435 @default.
- W4313377512 cites W243674440 @default.
- W4313377512 cites W2461729787 @default.
- W4313377512 cites W2562319730 @default.
- W4313377512 cites W2562639359 @default.
- W4313377512 cites W2562762876 @default.
- W4313377512 cites W2595657631 @default.
- W4313377512 cites W2601590138 @default.
- W4313377512 cites W2603304445 @default.
- W4313377512 cites W2612554669 @default.
- W4313377512 cites W2619304139 @default.
- W4313377512 cites W2728741793 @default.
- W4313377512 cites W2734669076 @default.
- W4313377512 cites W2740570963 @default.
- W4313377512 cites W2744790985 @default.
- W4313377512 cites W2746111230 @default.
- W4313377512 cites W2762355244 @default.
- W4313377512 cites W2768753204 @default.
- W4313377512 cites W2791694051 @default.
- W4313377512 cites W2793629656 @default.
- W4313377512 cites W2794869810 @default.
- W4313377512 cites W2801396593 @default.
- W4313377512 cites W2803978172 @default.
- W4313377512 cites W2808455316 @default.
- W4313377512 cites W2808496542 @default.
- W4313377512 cites W2810916489 @default.
- W4313377512 cites W2811341518 @default.
- W4313377512 cites W2887782657 @default.
- W4313377512 cites W2888337213 @default.
- W4313377512 cites W2889710505 @default.
- W4313377512 cites W2896487874 @default.
- W4313377512 cites W2898125729 @default.
- W4313377512 cites W2898375427 @default.
- W4313377512 cites W2904460913 @default.
- W4313377512 cites W2906256948 @default.
- W4313377512 cites W2907007702 @default.
- W4313377512 cites W2910029951 @default.
- W4313377512 cites W2911416839 @default.
- W4313377512 cites W2912412749 @default.
- W4313377512 cites W2912538417 @default.
- W4313377512 cites W2912744143 @default.
- W4313377512 cites W2914014468 @default.
- W4313377512 cites W2914345141 @default.
- W4313377512 cites W2916064970 @default.
- W4313377512 cites W2917014261 @default.
- W4313377512 cites W2921717016 @default.
- W4313377512 cites W2922660557 @default.
- W4313377512 cites W2935987343 @default.
- W4313377512 cites W2941731112 @default.
- W4313377512 cites W2942943006 @default.
- W4313377512 cites W2943099062 @default.
- W4313377512 cites W2943439651 @default.
- W4313377512 cites W2945282332 @default.
- W4313377512 cites W2946048316 @default.
- W4313377512 cites W2946867277 @default.
- W4313377512 cites W2954097683 @default.
- W4313377512 cites W2961333734 @default.
- W4313377512 cites W2962239755 @default.
- W4313377512 cites W2964285681 @default.
- W4313377512 cites W2966008650 @default.
- W4313377512 cites W2967625104 @default.
- W4313377512 cites W2968367246 @default.
- W4313377512 cites W2969372261 @default.
- W4313377512 cites W2969727807 @default.
- W4313377512 cites W2970706158 @default.
- W4313377512 cites W2971654674 @default.
- W4313377512 cites W2978157082 @default.
- W4313377512 cites W2980635665 @default.
- W4313377512 cites W2981037163 @default.
- W4313377512 cites W2981903163 @default.
- W4313377512 cites W2981982720 @default.
- W4313377512 cites W2983088808 @default.
- W4313377512 cites W2986996311 @default.
- W4313377512 cites W2987147016 @default.