Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313379710> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4313379710 endingPage "1511" @default.
- W4313379710 startingPage "1505" @default.
- W4313379710 abstract "To develop a predictive machine learning model to identify prognostic factors for continued opioid prescriptions after arthroscopic meniscus surgery.Patients undergoing arthroscopic meniscal surgery, such as meniscus debridement, repair, or revision at a single institution from 2013 to 2017 were retrospectively followed up to 1 year postoperatively. Procedural details were recorded, including concomitant procedures, primary versus revision, and whether a partial debridement or a repair was performed. Intraoperative arthritis severity was measured using the Outerbridge Classification. The number of opioid prescriptions in each month was recorded. Primary analysis used was the multivariate Cox-Regression model. We then created a naïve Bayesian model, a machine learning classifier that uses Bayes' theorem with an assumption of independence between variables.A total of 581 patients were reviewed. Postoperative opioid refills occurred in 98 patients (16.9%). Multivariate logistic modeling was used; independent risk factors for opioid refills included male sex, larger body mass index, and chronic preoperative opioid use, while meniscus resection demonstrated decreased likelihood of refills. Concomitant procedures, revision procedures, and presence of arthritis graded by the Outerbridge classification were not significant predictors of postoperative opioid refills. The naïve Bayesian model for extended postoperative opioid use demonstrated good fit with our cohort with an area under the curve of 0.79, sensitivity of 94.5%, positive predictive value (PPV) of 83%, and a detection rate of 78.2%. The two most important features in the model were preoperative opioid use and male sex.After arthroscopic meniscus surgery, preoperative opioid consumption and male sex were the most significant predictors for sustained opioid use beyond 1 month postoperatively. Intraoperative arthritis was not an independent risk factor for continued refills. A machine learning algorithm performed with high accuracy, although with a high false positive rate, to function as a screening tool to identify patients filling additional narcotic prescriptions after surgery.III, retrospective comparative study." @default.
- W4313379710 created "2023-01-06" @default.
- W4313379710 creator A5017986330 @default.
- W4313379710 creator A5024348130 @default.
- W4313379710 creator A5024537786 @default.
- W4313379710 creator A5046446469 @default.
- W4313379710 creator A5048106887 @default.
- W4313379710 creator A5068531878 @default.
- W4313379710 creator A5078879328 @default.
- W4313379710 creator A5088683616 @default.
- W4313379710 creator A5090665542 @default.
- W4313379710 date "2023-06-01" @default.
- W4313379710 modified "2023-10-18" @default.
- W4313379710 title "Machine Learning Model Identifies Preoperative Opioid Use, Male Sex, and Elevated Body Mass Index as Predictive Factors for Prolonged Opioid Consumption Following Arthroscopic Meniscal Surgery" @default.
- W4313379710 cites W1981453244 @default.
- W4313379710 cites W2001700582 @default.
- W4313379710 cites W2086184297 @default.
- W4313379710 cites W2100445448 @default.
- W4313379710 cites W2151480498 @default.
- W4313379710 cites W2152038842 @default.
- W4313379710 cites W2748537010 @default.
- W4313379710 cites W2770970161 @default.
- W4313379710 cites W2800304833 @default.
- W4313379710 cites W2808184318 @default.
- W4313379710 cites W2810437775 @default.
- W4313379710 cites W2812091082 @default.
- W4313379710 cites W2890157853 @default.
- W4313379710 cites W2907326229 @default.
- W4313379710 cites W2914750768 @default.
- W4313379710 cites W2957613487 @default.
- W4313379710 cites W3012303794 @default.
- W4313379710 cites W3015930813 @default.
- W4313379710 cites W3023210013 @default.
- W4313379710 cites W3029478107 @default.
- W4313379710 cites W3036096662 @default.
- W4313379710 cites W3091771999 @default.
- W4313379710 cites W3106085113 @default.
- W4313379710 cites W3112439265 @default.
- W4313379710 cites W3120182794 @default.
- W4313379710 cites W3196038567 @default.
- W4313379710 cites W4205755780 @default.
- W4313379710 cites W2947929784 @default.
- W4313379710 doi "https://doi.org/10.1016/j.arthro.2022.12.025" @default.
- W4313379710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36586470" @default.
- W4313379710 hasPublicationYear "2023" @default.
- W4313379710 type Work @default.
- W4313379710 citedByCount "2" @default.
- W4313379710 countsByYear W43133797102023 @default.
- W4313379710 crossrefType "journal-article" @default.
- W4313379710 hasAuthorship W4313379710A5017986330 @default.
- W4313379710 hasAuthorship W4313379710A5024348130 @default.
- W4313379710 hasAuthorship W4313379710A5024537786 @default.
- W4313379710 hasAuthorship W4313379710A5046446469 @default.
- W4313379710 hasAuthorship W4313379710A5048106887 @default.
- W4313379710 hasAuthorship W4313379710A5068531878 @default.
- W4313379710 hasAuthorship W4313379710A5078879328 @default.
- W4313379710 hasAuthorship W4313379710A5088683616 @default.
- W4313379710 hasAuthorship W4313379710A5090665542 @default.
- W4313379710 hasConcept C126322002 @default.
- W4313379710 hasConcept C141071460 @default.
- W4313379710 hasConcept C151956035 @default.
- W4313379710 hasConcept C170493617 @default.
- W4313379710 hasConcept C2779384505 @default.
- W4313379710 hasConcept C2780221984 @default.
- W4313379710 hasConcept C2781063702 @default.
- W4313379710 hasConcept C71924100 @default.
- W4313379710 hasConceptScore W4313379710C126322002 @default.
- W4313379710 hasConceptScore W4313379710C141071460 @default.
- W4313379710 hasConceptScore W4313379710C151956035 @default.
- W4313379710 hasConceptScore W4313379710C170493617 @default.
- W4313379710 hasConceptScore W4313379710C2779384505 @default.
- W4313379710 hasConceptScore W4313379710C2780221984 @default.
- W4313379710 hasConceptScore W4313379710C2781063702 @default.
- W4313379710 hasConceptScore W4313379710C71924100 @default.
- W4313379710 hasIssue "6" @default.
- W4313379710 hasLocation W43133797101 @default.
- W4313379710 hasLocation W43133797102 @default.
- W4313379710 hasOpenAccess W4313379710 @default.
- W4313379710 hasPrimaryLocation W43133797101 @default.
- W4313379710 hasRelatedWork W1982751459 @default.
- W4313379710 hasRelatedWork W2010906872 @default.
- W4313379710 hasRelatedWork W2033445329 @default.
- W4313379710 hasRelatedWork W2051812095 @default.
- W4313379710 hasRelatedWork W2067177021 @default.
- W4313379710 hasRelatedWork W2148119941 @default.
- W4313379710 hasRelatedWork W2364099549 @default.
- W4313379710 hasRelatedWork W2384005405 @default.
- W4313379710 hasRelatedWork W2415638501 @default.
- W4313379710 hasRelatedWork W2894349314 @default.
- W4313379710 hasVolume "39" @default.
- W4313379710 isParatext "false" @default.
- W4313379710 isRetracted "false" @default.
- W4313379710 workType "article" @default.