Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313379711> ?p ?o ?g. }
- W4313379711 endingPage "404.e3" @default.
- W4313379711 startingPage "397" @default.
- W4313379711 abstract "The development of a movable jaw is one of the most important transitions in the evolutionary history of animals. 1 Brazeau M.D. Friedman M. The origin and early phylogenetic history of jawed vertebrates. Nature. 2015; 520: 490-497 Crossref PubMed Scopus (124) Google Scholar Jawed vertebrates rapidly diversified after appearing approximately 470 million years ago. Today, only lampreys and hagfishes represent the once dominant jawless grade 2 Janvier P. Early jawless vertebrates and cyclostome origins. Zoolog. Sci. 2008; 25: 1045-1056 Crossref PubMed Scopus (59) Google Scholar ,3 Anderson P.S.L. Friedman M. Brazeau M.D. Rayfield E.J. Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature. 2011; 476: 206-209 Crossref PubMed Scopus (107) Google Scholar ,4 Donoghue P.C.J. Keating J.N. Early vertebrate evolution. Palaeontology. 2014; 57: 879-893https://doi.org/10.1111/pala.12125 Crossref Scopus (46) Google Scholar and comprise less than 1% of living vertebrate species. Their relationship to other vertebrates ranks among the more contentious problems in animal phylogenetics. 5 Hardisty M.W. Lampreys and hagfishes: analysis of cyclostome relationships. in: Hardisty M.W. Potter I.C. The biology of lampreys. Academic Press, 1982: 165-260 Google Scholar ,6 Yalden D.W. Feeding mechanisms as evidence for cyclostome monophyly. Zool. J. Linn. Soc. 1985; 84: 291-300 Crossref Scopus (71) Google Scholar ,7 Kuraku S. Hoshiyama D. Katoh K. Suga H. Miyata T. Monophyly of lampreys and hagfishes supported by nuclear DNA-coded genes. J. Mol. Evol. 1999; 49: 729-735 Crossref PubMed Scopus (103) Google Scholar ,8 Stock D.W. Whitt G.S. Evidence from 18S ribosomal RNA sequence that lampreys and hagfishes form a natural group. Science. 1992; 257: 787-789 Crossref PubMed Scopus (136) Google Scholar ,9 Delarbre C. Escriva H. Gallut C. Barriel V. Kourilsky P. Janvier P. Laudet V. Gachelin G. The complete nucleotide sequence of the mitochondrial DNA of the agnathan Lampetra fluviatilis: Bearings on the phylogeny of cyclostomes. Mol. Biol. Evol. 2000; 17: 519-529 Crossref PubMed Scopus (45) Google Scholar ,10 Near T.J. Conflict and resolution between phylogenies inferred from molecular and phenotypic data sets for hagfish, lampreys, and gnathostomes. J. Exp. Zool. B Mol. Dev. Evol. 2009; 312: 749-761 Crossref PubMed Scopus (37) Google Scholar ,11 Heimberg A.M. Cowper-Sallari R. Sémon M. Donoghue P.C.J. Peterson K.J. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc. Natl. Acad. Sci. USA. 2010; 107: 19379-19383 Crossref PubMed Scopus (224) Google Scholar ,12 Miyashita T. Coates M.I. Farrar R. Larson P. Manning P.L. Wogelius R.A. Edwards N.P. Anné J. Bergmann U. Palmer A.R. Currie P.J. Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny. Proc. Natl. Acad. Sci. USA. 2019; 116: 2146-2151https://doi.org/10.1073/pnas.1814794116 Crossref PubMed Scopus (71) Google Scholar Further, the phylogenetic relationships within lampreys and hagfishes remain unclear, 13 Gill H.S. Renaud C.B. Chapleau F. Mayden R.L. Potter I.C. Phylogeny of living parasitic lampreys (Petromyzontiformes) based on morphological data. Copeia. 2003; 2003: 687-703 Crossref Scopus (62) Google Scholar ,14 Lang N.J. Roe K.J. Renaud C.B. Gill H.S. Potter I.C. Freyhof J. Naseka A.M. Cochran P. Perez H.E. Habit E.M. et al. Novel relationships among lampreys (Petromyzontiformes) revealed by a taxonomically comprehensive molecular data set. Am. Fish. Soc. Symp. 2009; 72: 41-55 Google Scholar ,15 Fernholm B. Norén M. Kullander S.O. Quattrini A.M. Zintzen V. Roberts C.D. Mok H.-K. Kuo C.-H. Hagfish phylogeny and taxonomy, with description of the new genus Rubicundus (Craniata, Myxinidae). J. Zoolog. Syst. Evol. Res. 2013; 51: 296-307https://doi.org/10.1111/jzs.12035 Crossref Scopus (29) Google Scholar and the ages of their living lineages are largely unexplored. 16 Kuraku S. Kuratani S. Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences. Zoolog. Sci. 2006; 23: 1053-1064 Crossref PubMed Scopus (152) Google Scholar ,17 Pereira A.M. Levy A. Vukić J. Šanda R. Levin B.A. Freyhof J. Geiger M. Choleva L. Francisco S.M. Robalo J.I. Putting European lampreys into perspective: A global-scale multilocus phylogeny with a proposal for a generic structure of the Petromyzontidae. J. Zool. Syst. Evol. Res. 2021; 59: 1982-1993https://doi.org/10.1111/jzs.12522 Crossref Scopus (5) Google Scholar Because of their importance for the genomic and developmental changes that prefigured jawed vertebrate diversity, 18 Green S.A. Bronner M.E. The lamprey: A jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation. 2014; 87: 44-51https://doi.org/10.1016/j.diff.2014.02.001 Crossref PubMed Scopus (46) Google Scholar ,19 McCauley D.W. Docker M.F. Whyard S. Li W. Lampreys as diverse model organisms in the genomics era. Bioscience. 2015; 65: 1046-1056https://doi.org/10.1093/biosci/biv139 Crossref PubMed Scopus (38) Google Scholar ,20 Xu Y. Zhu S.W. Li Q.W. Lamprey: a model for vertebrate evolutionary research. Zool. Res. 2016; 37: 263-269https://doi.org/10.13918/j.issn.2095-8137.2016.5.263 Crossref PubMed Scopus (28) Google Scholar ,21 York J.R. Lee E.M.-J. McCauley D.W. The lamprey as a model vertebrate in evolutionary developmental biology. in: Lampreys: Biology, Conservation and Control. Volume 2. Springer Netherlands, 2019: 481-526https://doi.org/10.1007/978-94-024-1684-8_6 Crossref Google Scholar the evolutionary history of lampreys and hagfishes is a major frontier of organismal biology. Of these two clades, lampreys 22 Fricke R. Eschmeyer W.N. Fong J.D. Eschmeyer's Catalog of Fishes: genera/species by family/subfamily. https://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.aspDate: 2022 Google Scholar are more ecologically diverse, exhibiting freshwater, anadromous, and fully marine forms, as well as parasitic and nonparasitic species. 23 Hardisty M.W. The biology of cyclostomes. Chapman and Hall, 1979 Crossref Google Scholar ,24 Hardisty M.W. Lampreys: Life without jaws. Forrest Text, 2006 Google Scholar Here, we present a new phylogeny and historical biogeographic reconstruction of all living lampreys. Whereas the early diversification of this clade tracks Pangaean fragmentation, lampreys also rapidly radiated in the northern hemisphere during the mid-Cretaceous and directly after the Cretaceous-Paleogene extinction. These radiations mirrored concurrent ones in other animals and plants and coincided with changes to lamprey ecology and feeding behavior. Our results suggest that 80% of living lamprey clades appeared in the last 20 million years of Earth history. Rather than gradually accumulating since the oldest stem-group forms appeared in the early Paleozoic, living lamprey biodiversity results from diversifications extending from the Cretaceous to present." @default.
- W4313379711 created "2023-01-06" @default.
- W4313379711 creator A5033512149 @default.
- W4313379711 creator A5088952270 @default.
- W4313379711 date "2023-01-01" @default.
- W4313379711 modified "2023-10-18" @default.
- W4313379711 title "Phylogenetics and the Cenozoic radiation of lampreys" @default.
- W4313379711 cites W1605984840 @default.
- W4313379711 cites W1929197002 @default.
- W4313379711 cites W1984454437 @default.
- W4313379711 cites W1990949441 @default.
- W4313379711 cites W1992478084 @default.
- W4313379711 cites W2021655550 @default.
- W4313379711 cites W2030900050 @default.
- W4313379711 cites W2035388211 @default.
- W4313379711 cites W2036006596 @default.
- W4313379711 cites W2039073424 @default.
- W4313379711 cites W2042674954 @default.
- W4313379711 cites W2046057732 @default.
- W4313379711 cites W2057114526 @default.
- W4313379711 cites W2063894047 @default.
- W4313379711 cites W2068923763 @default.
- W4313379711 cites W2074548659 @default.
- W4313379711 cites W2076753208 @default.
- W4313379711 cites W2077514586 @default.
- W4313379711 cites W2087703661 @default.
- W4313379711 cites W2088687359 @default.
- W4313379711 cites W2094939159 @default.
- W4313379711 cites W2105020207 @default.
- W4313379711 cites W2105986017 @default.
- W4313379711 cites W2111647009 @default.
- W4313379711 cites W2112483819 @default.
- W4313379711 cites W2115851241 @default.
- W4313379711 cites W2119837484 @default.
- W4313379711 cites W2122082385 @default.
- W4313379711 cites W2129690732 @default.
- W4313379711 cites W2133277373 @default.
- W4313379711 cites W2134910771 @default.
- W4313379711 cites W2140803428 @default.
- W4313379711 cites W2151409320 @default.
- W4313379711 cites W2158436408 @default.
- W4313379711 cites W2160141842 @default.
- W4313379711 cites W2179239324 @default.
- W4313379711 cites W2230132854 @default.
- W4313379711 cites W2247844105 @default.
- W4313379711 cites W2342577284 @default.
- W4313379711 cites W239538263 @default.
- W4313379711 cites W240190259 @default.
- W4313379711 cites W2537326830 @default.
- W4313379711 cites W2596873268 @default.
- W4313379711 cites W2624062082 @default.
- W4313379711 cites W2790896447 @default.
- W4313379711 cites W2801159594 @default.
- W4313379711 cites W2893828954 @default.
- W4313379711 cites W2901954177 @default.
- W4313379711 cites W2908650979 @default.
- W4313379711 cites W2976225444 @default.
- W4313379711 cites W2981792884 @default.
- W4313379711 cites W3005748121 @default.
- W4313379711 cites W3028788875 @default.
- W4313379711 cites W3133860603 @default.
- W4313379711 cites W3154244125 @default.
- W4313379711 cites W3184052421 @default.
- W4313379711 cites W3198783146 @default.
- W4313379711 cites W3199735062 @default.
- W4313379711 cites W3217156772 @default.
- W4313379711 cites W4200339067 @default.
- W4313379711 cites W4231969088 @default.
- W4313379711 cites W4285388896 @default.
- W4313379711 cites W4297475631 @default.
- W4313379711 cites W4378646759 @default.
- W4313379711 doi "https://doi.org/10.1016/j.cub.2022.12.018" @default.
- W4313379711 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36586410" @default.
- W4313379711 hasPublicationYear "2023" @default.
- W4313379711 type Work @default.
- W4313379711 citedByCount "5" @default.
- W4313379711 countsByYear W43133797112023 @default.
- W4313379711 crossrefType "journal-article" @default.
- W4313379711 hasAuthorship W4313379711A5033512149 @default.
- W4313379711 hasAuthorship W4313379711A5088952270 @default.
- W4313379711 hasConcept C104317684 @default.
- W4313379711 hasConcept C12326286 @default.
- W4313379711 hasConcept C151730666 @default.
- W4313379711 hasConcept C189984833 @default.
- W4313379711 hasConcept C2778961482 @default.
- W4313379711 hasConcept C2779473830 @default.
- W4313379711 hasConcept C44465124 @default.
- W4313379711 hasConcept C54355233 @default.
- W4313379711 hasConcept C55493867 @default.
- W4313379711 hasConcept C78458016 @default.
- W4313379711 hasConcept C83867959 @default.
- W4313379711 hasConcept C86803240 @default.
- W4313379711 hasConcept C90132467 @default.
- W4313379711 hasConcept C90856448 @default.
- W4313379711 hasConceptScore W4313379711C104317684 @default.
- W4313379711 hasConceptScore W4313379711C12326286 @default.
- W4313379711 hasConceptScore W4313379711C151730666 @default.
- W4313379711 hasConceptScore W4313379711C189984833 @default.