Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313379833> ?p ?o ?g. }
- W4313379833 endingPage "106416" @default.
- W4313379833 startingPage "106416" @default.
- W4313379833 abstract "Automatic retinal blood vessel segmentation is a key link in the diagnosis of ophthalmic diseases. Recent deep learning methods have achieved high accuracy in vessel segmentation but still face challenges in maintaining vascular structural connectivity. Therefore, this paper proposes a novel retinal blood vessel segmentation strategy that includes three stages: vessel structure detection, vessel branch extraction and broken vessel segment reconnection. First, we propose a multiscale linear structure detection network (MS-LSDNet), which improves the detection ability of fine blood vessels by learning the types of rich hierarchical features. In addition, to maintain the connectivity of the vascular structure in the process of binarization of the vascular probability map, an adaptive hysteresis threshold method for vascular extraction is proposed. Finally, we propose a vascular tree structure reconstruction algorithm based on a geometric skeleton to connect the broken vessel segments. Experimental results on three publicly available datasets show that compared with current state-of-the-art algorithms, our strategy effectively maintains the connectivity of retinal vascular tree structure." @default.
- W4313379833 created "2023-01-06" @default.
- W4313379833 creator A5001877853 @default.
- W4313379833 creator A5017899846 @default.
- W4313379833 creator A5038672755 @default.
- W4313379833 creator A5052734823 @default.
- W4313379833 creator A5057715969 @default.
- W4313379833 creator A5077298638 @default.
- W4313379833 creator A5089438496 @default.
- W4313379833 date "2023-02-01" @default.
- W4313379833 modified "2023-10-16" @default.
- W4313379833 title "Retinal blood vessel segmentation by using the MS-LSDNet network and geometric skeleton reconnection method" @default.
- W4313379833 cites W1998386860 @default.
- W4313379833 cites W2001412060 @default.
- W4313379833 cites W2019459588 @default.
- W4313379833 cites W2026049502 @default.
- W4313379833 cites W2033723371 @default.
- W4313379833 cites W2037776979 @default.
- W4313379833 cites W2051578148 @default.
- W4313379833 cites W2072130234 @default.
- W4313379833 cites W2092300159 @default.
- W4313379833 cites W2095528227 @default.
- W4313379833 cites W2109037308 @default.
- W4313379833 cites W2116628223 @default.
- W4313379833 cites W2121913681 @default.
- W4313379833 cites W2122639624 @default.
- W4313379833 cites W2133059825 @default.
- W4313379833 cites W2145305441 @default.
- W4313379833 cites W2150769593 @default.
- W4313379833 cites W2166524747 @default.
- W4313379833 cites W2171459511 @default.
- W4313379833 cites W2194775991 @default.
- W4313379833 cites W2206167351 @default.
- W4313379833 cites W2320230300 @default.
- W4313379833 cites W2327793514 @default.
- W4313379833 cites W2463610651 @default.
- W4313379833 cites W2488605601 @default.
- W4313379833 cites W2531409750 @default.
- W4313379833 cites W2587662788 @default.
- W4313379833 cites W2606663706 @default.
- W4313379833 cites W2799240462 @default.
- W4313379833 cites W2801013643 @default.
- W4313379833 cites W2802388893 @default.
- W4313379833 cites W2806038387 @default.
- W4313379833 cites W2809144587 @default.
- W4313379833 cites W2893691907 @default.
- W4313379833 cites W2982364173 @default.
- W4313379833 cites W3025177399 @default.
- W4313379833 cites W3028954669 @default.
- W4313379833 cites W3034275844 @default.
- W4313379833 cites W3036827192 @default.
- W4313379833 cites W3081435712 @default.
- W4313379833 cites W3089571734 @default.
- W4313379833 cites W3094059395 @default.
- W4313379833 cites W3103010481 @default.
- W4313379833 cites W3112712298 @default.
- W4313379833 cites W3126012224 @default.
- W4313379833 cites W3139489160 @default.
- W4313379833 cites W3142788400 @default.
- W4313379833 cites W3155737436 @default.
- W4313379833 cites W3163092490 @default.
- W4313379833 cites W3171579381 @default.
- W4313379833 cites W4280521522 @default.
- W4313379833 cites W4280637152 @default.
- W4313379833 cites W845365781 @default.
- W4313379833 doi "https://doi.org/10.1016/j.compbiomed.2022.106416" @default.
- W4313379833 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36586230" @default.
- W4313379833 hasPublicationYear "2023" @default.
- W4313379833 type Work @default.
- W4313379833 citedByCount "1" @default.
- W4313379833 countsByYear W43133798332023 @default.
- W4313379833 crossrefType "journal-article" @default.
- W4313379833 hasAuthorship W4313379833A5001877853 @default.
- W4313379833 hasAuthorship W4313379833A5017899846 @default.
- W4313379833 hasAuthorship W4313379833A5038672755 @default.
- W4313379833 hasAuthorship W4313379833A5052734823 @default.
- W4313379833 hasAuthorship W4313379833A5057715969 @default.
- W4313379833 hasAuthorship W4313379833A5077298638 @default.
- W4313379833 hasAuthorship W4313379833A5089438496 @default.
- W4313379833 hasConcept C105702510 @default.
- W4313379833 hasConcept C111919701 @default.
- W4313379833 hasConcept C113174947 @default.
- W4313379833 hasConcept C11413529 @default.
- W4313379833 hasConcept C134018914 @default.
- W4313379833 hasConcept C134306372 @default.
- W4313379833 hasConcept C153180895 @default.
- W4313379833 hasConcept C154945302 @default.
- W4313379833 hasConcept C163797641 @default.
- W4313379833 hasConcept C197855036 @default.
- W4313379833 hasConcept C2777663904 @default.
- W4313379833 hasConcept C3019347889 @default.
- W4313379833 hasConcept C31972630 @default.
- W4313379833 hasConcept C33923547 @default.
- W4313379833 hasConcept C41008148 @default.
- W4313379833 hasConcept C86803240 @default.
- W4313379833 hasConcept C89600930 @default.
- W4313379833 hasConcept C98045186 @default.
- W4313379833 hasConceptScore W4313379833C105702510 @default.