Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313379912> ?p ?o ?g. }
- W4313379912 endingPage "107324" @default.
- W4313379912 startingPage "107324" @default.
- W4313379912 abstract "Incorporating the time-frequency localization properties of Gabor transform (GT), the complexity understandings of convolutional neural network (CNN), and histogram of oriented gradients (HOG) efficacy in distinguishing positive peaks can exhibit their characteristics to reveal an effective solution in the detection of P300 evoked related potential (ERP). By applying a drastic number of convolutional layers, the majority of deep networks elicit sufficient properties for the output determination, leading to gigantic and time-consuming structures. In this paper, we propose a novel deep learning framework by the combination of tuned GT, and modified HOG with the CNN as TGT-MHOG-CNN for detection of P300 ERP in EEG signal.In the proposed method, GT is tuned based on triangular function for EEG signals, and then spectrograms including time-frequency information are captured. The function's parameters are justified to differentiate the signals with the P300 component. Furthermore, HOG is modified (MHOG) for the 2-D EEG signal, and consequently, gradients patterns are extracted for the target potentials. MHOG is potent in distinguishing the positive peak in the general waveform; however, GT unravels time-frequency information, which is ignored in the gradient histogram. These outputs of GT and MHOG do not share the same nature in the images nor overlap. Therefore, more extensive information is reached without redundancy or excessive information by fusing them. Combining GT and MHOG provides different patterns which benefit CNN for more precise detection. Consequently, TGT-MHOG-CNN ends in a more straightforward structure than other networks, and therefore, the whole performance is acceptable with faster rates and very high accuracy.BCI Competition II and III datasets are used to evaluate the performance of the proposed method. These datasets include a complete record for P300 ERP with BCI2000 using a paradigm, and it has numerous noises, including power and muscle-based noises. The objective is to predict the correct character in each provided character selection epochs. Compared to state-of-the-art methods, simulation results indicate striking abilities of the proposed framework for P300 ERP detection. Our best record reached the P300 ERP classification rates of over 98.7% accuracy and 98.7% precision for BCI Competition II and 99% accuracy and 100% precision for BCI Competition III datasets, with superiority in execution time for the mentioned datasets." @default.
- W4313379912 created "2023-01-06" @default.
- W4313379912 creator A5023065618 @default.
- W4313379912 creator A5023374069 @default.
- W4313379912 creator A5048675934 @default.
- W4313379912 creator A5052490368 @default.
- W4313379912 date "2023-02-01" @default.
- W4313379912 modified "2023-09-27" @default.
- W4313379912 title "An efficient deep learning framework for P300 evoked related potential detection in EEG signal" @default.
- W4313379912 cites W1984183833 @default.
- W4313379912 cites W2039875032 @default.
- W4313379912 cites W2098100592 @default.
- W4313379912 cites W2110545034 @default.
- W4313379912 cites W2150590430 @default.
- W4313379912 cites W2525360836 @default.
- W4313379912 cites W2573900912 @default.
- W4313379912 cites W2613951549 @default.
- W4313379912 cites W2744936117 @default.
- W4313379912 cites W2747927676 @default.
- W4313379912 cites W2751159520 @default.
- W4313379912 cites W2792724009 @default.
- W4313379912 cites W2793397193 @default.
- W4313379912 cites W2800428573 @default.
- W4313379912 cites W2885949111 @default.
- W4313379912 cites W2896628614 @default.
- W4313379912 cites W2963881378 @default.
- W4313379912 cites W2969333702 @default.
- W4313379912 cites W2973147862 @default.
- W4313379912 cites W3011493690 @default.
- W4313379912 cites W3036262803 @default.
- W4313379912 cites W3085334857 @default.
- W4313379912 cites W3102118598 @default.
- W4313379912 cites W3102455230 @default.
- W4313379912 cites W3111092203 @default.
- W4313379912 cites W3120352462 @default.
- W4313379912 cites W3125565150 @default.
- W4313379912 cites W3136247184 @default.
- W4313379912 cites W3145716770 @default.
- W4313379912 cites W3161516736 @default.
- W4313379912 cites W3185867485 @default.
- W4313379912 cites W3194531986 @default.
- W4313379912 cites W3204386011 @default.
- W4313379912 cites W3204483549 @default.
- W4313379912 cites W3211800238 @default.
- W4313379912 cites W3212340323 @default.
- W4313379912 cites W3216862421 @default.
- W4313379912 cites W3216927580 @default.
- W4313379912 cites W4205619854 @default.
- W4313379912 cites W4211170405 @default.
- W4313379912 cites W4214492190 @default.
- W4313379912 cites W4220845668 @default.
- W4313379912 cites W4225153968 @default.
- W4313379912 cites W4226280838 @default.
- W4313379912 cites W4248483611 @default.
- W4313379912 cites W4283166027 @default.
- W4313379912 cites W4283794225 @default.
- W4313379912 cites W4284897031 @default.
- W4313379912 cites W4289933154 @default.
- W4313379912 cites W4308655700 @default.
- W4313379912 doi "https://doi.org/10.1016/j.cmpb.2022.107324" @default.
- W4313379912 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36586179" @default.
- W4313379912 hasPublicationYear "2023" @default.
- W4313379912 type Work @default.
- W4313379912 citedByCount "2" @default.
- W4313379912 countsByYear W43133799122023 @default.
- W4313379912 crossrefType "journal-article" @default.
- W4313379912 hasAuthorship W4313379912A5023065618 @default.
- W4313379912 hasAuthorship W4313379912A5023374069 @default.
- W4313379912 hasAuthorship W4313379912A5048675934 @default.
- W4313379912 hasAuthorship W4313379912A5052490368 @default.
- W4313379912 hasConcept C108583219 @default.
- W4313379912 hasConcept C111919701 @default.
- W4313379912 hasConcept C115961682 @default.
- W4313379912 hasConcept C152124472 @default.
- W4313379912 hasConcept C153180895 @default.
- W4313379912 hasConcept C154945302 @default.
- W4313379912 hasConcept C169760540 @default.
- W4313379912 hasConcept C199360897 @default.
- W4313379912 hasConcept C2779843651 @default.
- W4313379912 hasConcept C41008148 @default.
- W4313379912 hasConcept C45273575 @default.
- W4313379912 hasConcept C522805319 @default.
- W4313379912 hasConcept C53533937 @default.
- W4313379912 hasConcept C81363708 @default.
- W4313379912 hasConcept C86803240 @default.
- W4313379912 hasConceptScore W4313379912C108583219 @default.
- W4313379912 hasConceptScore W4313379912C111919701 @default.
- W4313379912 hasConceptScore W4313379912C115961682 @default.
- W4313379912 hasConceptScore W4313379912C152124472 @default.
- W4313379912 hasConceptScore W4313379912C153180895 @default.
- W4313379912 hasConceptScore W4313379912C154945302 @default.
- W4313379912 hasConceptScore W4313379912C169760540 @default.
- W4313379912 hasConceptScore W4313379912C199360897 @default.
- W4313379912 hasConceptScore W4313379912C2779843651 @default.
- W4313379912 hasConceptScore W4313379912C41008148 @default.
- W4313379912 hasConceptScore W4313379912C45273575 @default.
- W4313379912 hasConceptScore W4313379912C522805319 @default.
- W4313379912 hasConceptScore W4313379912C53533937 @default.