Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313379929> ?p ?o ?g. }
- W4313379929 endingPage "161138" @default.
- W4313379929 startingPage "161138" @default.
- W4313379929 abstract "California's Central Valley, one of the most agriculturally productive regions, is also one of the most stressed aquifers in the world due to anthropogenic groundwater over-extraction primarily for irrigation. Groundwater depletion is further exacerbated by climate-driven droughts. Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry has demonstrated the feasibility of quantifying global groundwater storage changes at uniform monthly sampling, though at a coarse resolution and is thus impractical for effective water resources management. Here, we employ the Random Forest machine learning algorithm to establish empirical relationships between GRACE-derived groundwater storage and in situ groundwater level variations over the Central Valley during 2002-2016 and achieved spatial downscaling of GRACE-observed groundwater storage changes from a few hundred km to 5 km. Validations of our modeled groundwater level with in situ groundwater level indicate excellent Nash-Sutcliffe Efficiency coefficients ranging from 0.94 to 0.97. In addition, the secular components of modeled groundwater show good agreements with those of vertical displacements observed by GPS, and CryoSat-2 radar altimetry measurements and is perfectly consistent with findings from previous studies. Our estimated groundwater loss is about 30 km3 from 2002 to 2016, which also agrees well with previous studies in Central Valley. We find the maximum groundwater storage loss rates of -5.7 ± 1.2 km3 yr-1 and -9.8 ± 1.7 km3 yr-1 occurred during the extended drought periods of January 2007-December 2009, and October 2011-September 2015, respectively while Central Valley also experienced groundwater recharges during prolonged flood episodes. The 5-km resolution Central Valley-wide groundwater storage trends reveal that groundwater depletion occurs mostly in southern San Joaquin Valley collocated with severe land subsidence due to aquifer compaction from excessive groundwater over withdrawal." @default.
- W4313379929 created "2023-01-06" @default.
- W4313379929 creator A5016910459 @default.
- W4313379929 creator A5028315185 @default.
- W4313379929 creator A5031787313 @default.
- W4313379929 creator A5035374815 @default.
- W4313379929 creator A5037804613 @default.
- W4313379929 creator A5039289027 @default.
- W4313379929 creator A5043477877 @default.
- W4313379929 creator A5051262408 @default.
- W4313379929 creator A5070795188 @default.
- W4313379929 date "2023-03-01" @default.
- W4313379929 modified "2023-10-11" @default.
- W4313379929 title "Machine learning based downscaling of GRACE-estimated groundwater in Central Valley, California" @default.
- W4313379929 cites W1484814760 @default.
- W4313379929 cites W1566427759 @default.
- W4313379929 cites W1822761522 @default.
- W4313379929 cites W1929158363 @default.
- W4313379929 cites W1966334841 @default.
- W4313379929 cites W1969346408 @default.
- W4313379929 cites W1981130750 @default.
- W4313379929 cites W1982546148 @default.
- W4313379929 cites W199654687 @default.
- W4313379929 cites W2000674771 @default.
- W4313379929 cites W2011945663 @default.
- W4313379929 cites W2015928143 @default.
- W4313379929 cites W2017307986 @default.
- W4313379929 cites W2022712506 @default.
- W4313379929 cites W2022853706 @default.
- W4313379929 cites W2029678803 @default.
- W4313379929 cites W2060576920 @default.
- W4313379929 cites W2105981176 @default.
- W4313379929 cites W2106371033 @default.
- W4313379929 cites W2130091784 @default.
- W4313379929 cites W2149403013 @default.
- W4313379929 cites W2153971255 @default.
- W4313379929 cites W2155347783 @default.
- W4313379929 cites W2165184011 @default.
- W4313379929 cites W2173199232 @default.
- W4313379929 cites W2192203593 @default.
- W4313379929 cites W2216946510 @default.
- W4313379929 cites W2294001037 @default.
- W4313379929 cites W2590380458 @default.
- W4313379929 cites W2605676989 @default.
- W4313379929 cites W2731938692 @default.
- W4313379929 cites W2766527683 @default.
- W4313379929 cites W2767496663 @default.
- W4313379929 cites W2786804361 @default.
- W4313379929 cites W2791403504 @default.
- W4313379929 cites W2803686615 @default.
- W4313379929 cites W2808148054 @default.
- W4313379929 cites W2900235934 @default.
- W4313379929 cites W2911964244 @default.
- W4313379929 cites W2916366897 @default.
- W4313379929 cites W2925986121 @default.
- W4313379929 cites W2937103134 @default.
- W4313379929 cites W2942047515 @default.
- W4313379929 cites W2943160824 @default.
- W4313379929 cites W2943844017 @default.
- W4313379929 cites W2945993308 @default.
- W4313379929 cites W2948053842 @default.
- W4313379929 cites W2979409277 @default.
- W4313379929 cites W2982770681 @default.
- W4313379929 cites W2990916810 @default.
- W4313379929 cites W2994688647 @default.
- W4313379929 cites W3011282527 @default.
- W4313379929 cites W304549626 @default.
- W4313379929 cites W3088997255 @default.
- W4313379929 cites W3107569396 @default.
- W4313379929 cites W3109006555 @default.
- W4313379929 cites W3129144742 @default.
- W4313379929 cites W3134611448 @default.
- W4313379929 cites W3191246754 @default.
- W4313379929 cites W3204018692 @default.
- W4313379929 cites W3204140070 @default.
- W4313379929 cites W4200387875 @default.
- W4313379929 cites W4212900470 @default.
- W4313379929 cites W4220851875 @default.
- W4313379929 doi "https://doi.org/10.1016/j.scitotenv.2022.161138" @default.
- W4313379929 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36586696" @default.
- W4313379929 hasPublicationYear "2023" @default.
- W4313379929 type Work @default.
- W4313379929 citedByCount "5" @default.
- W4313379929 countsByYear W43133799292023 @default.
- W4313379929 crossrefType "journal-article" @default.
- W4313379929 hasAuthorship W4313379929A5016910459 @default.
- W4313379929 hasAuthorship W4313379929A5028315185 @default.
- W4313379929 hasAuthorship W4313379929A5031787313 @default.
- W4313379929 hasAuthorship W4313379929A5035374815 @default.
- W4313379929 hasAuthorship W4313379929A5037804613 @default.
- W4313379929 hasAuthorship W4313379929A5039289027 @default.
- W4313379929 hasAuthorship W4313379929A5043477877 @default.
- W4313379929 hasAuthorship W4313379929A5051262408 @default.
- W4313379929 hasAuthorship W4313379929A5070795188 @default.
- W4313379929 hasBestOaLocation W43133799292 @default.
- W4313379929 hasConcept C111368507 @default.
- W4313379929 hasConcept C127313418 @default.
- W4313379929 hasConcept C132651083 @default.