Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313388727> ?p ?o ?g. }
- W4313388727 endingPage "489" @default.
- W4313388727 startingPage "489" @default.
- W4313388727 abstract "In recent years, the use of remotely sensed and on-ground observations of crop fields, in conjunction with machine learning techniques, has led to highly accurate crop yield estimations. In this work, we propose to further improve the yield prediction task by using Convolutional Neural Networks (CNNs) given their unique ability to exploit the spatial information of small regions of the field. We present a novel CNN architecture called Hyper3DNetReg that takes in a multi-channel input raster and, unlike previous approaches, outputs a two-dimensional raster, where each output pixel represents the predicted yield value of the corresponding input pixel. Our proposed method then generates a yield prediction map by aggregating the overlapping yield prediction patches obtained throughout the field. Our data consist of a set of eight rasterized remotely-sensed features: nitrogen rate applied, precipitation, slope, elevation, topographic position index (TPI), aspect, and two radar backscatter coefficients acquired from the Sentinel-1 satellites. We use data collected during the early stage of the winter wheat growing season (March) to predict yield values during the harvest season (August). We present leave-one-out cross-validation experiments for rain-fed winter wheat over four fields and show that our proposed methodology produces better predictions than five compared methods, including Bayesian multiple linear regression, standard multiple linear regression, random forest, an ensemble of feedforward networks using AdaBoost, a stacked autoencoder, and two other CNN architectures." @default.
- W4313388727 created "2023-01-06" @default.
- W4313388727 creator A5010087293 @default.
- W4313388727 creator A5015213297 @default.
- W4313388727 creator A5061652989 @default.
- W4313388727 creator A5072522101 @default.
- W4313388727 date "2023-01-02" @default.
- W4313388727 modified "2023-09-25" @default.
- W4313388727 title "Improved Yield Prediction of Winter Wheat Using a Novel Two-Dimensional Deep Regression Neural Network Trained via Remote Sensing" @default.
- W4313388727 cites W1563135901 @default.
- W4313388727 cites W1566643100 @default.
- W4313388727 cites W1978331315 @default.
- W4313388727 cites W1982483011 @default.
- W4313388727 cites W1986072339 @default.
- W4313388727 cites W1987415163 @default.
- W4313388727 cites W2041137640 @default.
- W4313388727 cites W2046162896 @default.
- W4313388727 cites W2084952127 @default.
- W4313388727 cites W2094802095 @default.
- W4313388727 cites W2114248304 @default.
- W4313388727 cites W2133665775 @default.
- W4313388727 cites W2137321294 @default.
- W4313388727 cites W2138632244 @default.
- W4313388727 cites W2197480580 @default.
- W4313388727 cites W2361479269 @default.
- W4313388727 cites W2518435759 @default.
- W4313388727 cites W2523192248 @default.
- W4313388727 cites W2531409750 @default.
- W4313388727 cites W2604645045 @default.
- W4313388727 cites W2772481104 @default.
- W4313388727 cites W2884690740 @default.
- W4313388727 cites W2887311010 @default.
- W4313388727 cites W2962325202 @default.
- W4313388727 cites W2963446712 @default.
- W4313388727 cites W2963935416 @default.
- W4313388727 cites W2969295906 @default.
- W4313388727 cites W2971480543 @default.
- W4313388727 cites W2978511665 @default.
- W4313388727 cites W2998315072 @default.
- W4313388727 cites W3006608465 @default.
- W4313388727 cites W3026920442 @default.
- W4313388727 cites W3034653698 @default.
- W4313388727 cites W3045531049 @default.
- W4313388727 cites W3079760979 @default.
- W4313388727 cites W3175162625 @default.
- W4313388727 cites W4246540172 @default.
- W4313388727 doi "https://doi.org/10.3390/s23010489" @default.
- W4313388727 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36617083" @default.
- W4313388727 hasPublicationYear "2023" @default.
- W4313388727 type Work @default.
- W4313388727 citedByCount "3" @default.
- W4313388727 countsByYear W43133887272023 @default.
- W4313388727 crossrefType "journal-article" @default.
- W4313388727 hasAuthorship W4313388727A5010087293 @default.
- W4313388727 hasAuthorship W4313388727A5015213297 @default.
- W4313388727 hasAuthorship W4313388727A5061652989 @default.
- W4313388727 hasAuthorship W4313388727A5072522101 @default.
- W4313388727 hasBestOaLocation W43133887271 @default.
- W4313388727 hasConcept C101738243 @default.
- W4313388727 hasConcept C105795698 @default.
- W4313388727 hasConcept C119857082 @default.
- W4313388727 hasConcept C127313418 @default.
- W4313388727 hasConcept C153180895 @default.
- W4313388727 hasConcept C154945302 @default.
- W4313388727 hasConcept C169258074 @default.
- W4313388727 hasConcept C33923547 @default.
- W4313388727 hasConcept C41008148 @default.
- W4313388727 hasConcept C48921125 @default.
- W4313388727 hasConcept C50644808 @default.
- W4313388727 hasConcept C62649853 @default.
- W4313388727 hasConcept C81363708 @default.
- W4313388727 hasConcept C83546350 @default.
- W4313388727 hasConceptScore W4313388727C101738243 @default.
- W4313388727 hasConceptScore W4313388727C105795698 @default.
- W4313388727 hasConceptScore W4313388727C119857082 @default.
- W4313388727 hasConceptScore W4313388727C127313418 @default.
- W4313388727 hasConceptScore W4313388727C153180895 @default.
- W4313388727 hasConceptScore W4313388727C154945302 @default.
- W4313388727 hasConceptScore W4313388727C169258074 @default.
- W4313388727 hasConceptScore W4313388727C33923547 @default.
- W4313388727 hasConceptScore W4313388727C41008148 @default.
- W4313388727 hasConceptScore W4313388727C48921125 @default.
- W4313388727 hasConceptScore W4313388727C50644808 @default.
- W4313388727 hasConceptScore W4313388727C62649853 @default.
- W4313388727 hasConceptScore W4313388727C81363708 @default.
- W4313388727 hasConceptScore W4313388727C83546350 @default.
- W4313388727 hasIssue "1" @default.
- W4313388727 hasLocation W43133887271 @default.
- W4313388727 hasLocation W43133887272 @default.
- W4313388727 hasLocation W43133887273 @default.
- W4313388727 hasLocation W43133887274 @default.
- W4313388727 hasOpenAccess W4313388727 @default.
- W4313388727 hasPrimaryLocation W43133887271 @default.
- W4313388727 hasRelatedWork W2292254049 @default.
- W4313388727 hasRelatedWork W2592385986 @default.
- W4313388727 hasRelatedWork W2897995864 @default.
- W4313388727 hasRelatedWork W2998168123 @default.
- W4313388727 hasRelatedWork W4281924768 @default.