Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313388844> ?p ?o ?g. }
- W4313388844 endingPage "38" @default.
- W4313388844 startingPage "21" @default.
- W4313388844 abstract "Abstract. Accurate estimates of snow water equivalent (SWE) based on remote sensing have been elusive, particularly in mountain areas. However, there now appears to be some potential for direct satellite-based SWE observations along ground tracks that only cover a portion of a spatial domain (e.g., watershed). Fortunately, spatiotemporally continuous meteorological and surface variables could be leveraged to infer SWE in the gaps between satellite ground tracks. Here, we evaluate statistical and machine learning (ML) approaches to performing track-to-area (TTA) transformations of SWE observations in California's upper Tuolumne River watershed using synthetic data. The synthetic SWE measurements are designed to mimic a potential future P-band Signals of Opportunity (P-SoOP) satellite mission with a (along-track) spatial resolution of about 500 m. We construct relationships between multiple meteorological and surface variables and synthetic SWE observations along observation tracks, and we then extend these relationships to unobserved areas between ground tracks to estimate SWE over the entire watershed. Domain-wide, SWE inferred on 1 April using two synthetic satellite tracks (∼4.5 % basin coverage) led to percent errors of basin-averaged SWE (PEBAS) of 24.5 %, 4.5 % and 6.3 % in an extremely dry water year (WY2015), a normal water year (WY2008) and an extraordinarily wet water year (WY2017), respectively. Assuming a 10 d overpass interval, percent errors of basin-averaged SWE during both snow accumulation and snowmelt seasons were mostly less than 10 %. We employ a feature sensitivity analysis to overcome the black-box nature of ML methods and increase the explainability of the ML results. Our feature sensitivity analysis shows that precipitation is the dominant variable controlling the TTA SWE estimation, followed by net long-wave radiation (NetLong). We find that a modest increase in the accuracy of SWE estimation occurs when more than two ground tracks are leveraged. The accuracy of 1 April SWE estimation is only modestly improved for track repeats more often than about 15 d." @default.
- W4313388844 created "2023-01-06" @default.
- W4313388844 creator A5001030255 @default.
- W4313388844 creator A5040977258 @default.
- W4313388844 creator A5041228669 @default.
- W4313388844 creator A5052600091 @default.
- W4313388844 creator A5064340746 @default.
- W4313388844 date "2023-01-02" @default.
- W4313388844 modified "2023-10-18" @default.
- W4313388844 title "Estimating spatiotemporally continuous snow water equivalent from intermittent satellite observations: an evaluation using synthetic data" @default.
- W4313388844 cites W1538302247 @default.
- W4313388844 cites W1883948941 @default.
- W4313388844 cites W1899083809 @default.
- W4313388844 cites W1948837742 @default.
- W4313388844 cites W195150910 @default.
- W4313388844 cites W1977177161 @default.
- W4313388844 cites W1993131235 @default.
- W4313388844 cites W1998840704 @default.
- W4313388844 cites W2002604925 @default.
- W4313388844 cites W2010052203 @default.
- W4313388844 cites W2017358747 @default.
- W4313388844 cites W2035923727 @default.
- W4313388844 cites W2053886687 @default.
- W4313388844 cites W2075216616 @default.
- W4313388844 cites W2077579946 @default.
- W4313388844 cites W2080281207 @default.
- W4313388844 cites W2084744129 @default.
- W4313388844 cites W2103497845 @default.
- W4313388844 cites W2145507149 @default.
- W4313388844 cites W2146846308 @default.
- W4313388844 cites W2150826936 @default.
- W4313388844 cites W2157173445 @default.
- W4313388844 cites W2168241747 @default.
- W4313388844 cites W2180124860 @default.
- W4313388844 cites W2321223643 @default.
- W4313388844 cites W2519376232 @default.
- W4313388844 cites W2561619973 @default.
- W4313388844 cites W2587005214 @default.
- W4313388844 cites W2611772571 @default.
- W4313388844 cites W2618013857 @default.
- W4313388844 cites W2797297459 @default.
- W4313388844 cites W2901312569 @default.
- W4313388844 cites W2901966498 @default.
- W4313388844 cites W2911964244 @default.
- W4313388844 cites W2921283045 @default.
- W4313388844 cites W2986558353 @default.
- W4313388844 cites W3012393929 @default.
- W4313388844 cites W3044998100 @default.
- W4313388844 cites W3077548796 @default.
- W4313388844 cites W3085509882 @default.
- W4313388844 cites W3125515083 @default.
- W4313388844 cites W3129395957 @default.
- W4313388844 cites W3195433497 @default.
- W4313388844 cites W3205832097 @default.
- W4313388844 cites W3208670915 @default.
- W4313388844 cites W4225078822 @default.
- W4313388844 cites W4283265886 @default.
- W4313388844 cites W4308459627 @default.
- W4313388844 doi "https://doi.org/10.5194/hess-27-21-2023" @default.
- W4313388844 hasPublicationYear "2023" @default.
- W4313388844 type Work @default.
- W4313388844 citedByCount "1" @default.
- W4313388844 countsByYear W43133888442023 @default.
- W4313388844 crossrefType "journal-article" @default.
- W4313388844 hasAuthorship W4313388844A5001030255 @default.
- W4313388844 hasAuthorship W4313388844A5040977258 @default.
- W4313388844 hasAuthorship W4313388844A5041228669 @default.
- W4313388844 hasAuthorship W4313388844A5052600091 @default.
- W4313388844 hasAuthorship W4313388844A5064340746 @default.
- W4313388844 hasBestOaLocation W43133888441 @default.
- W4313388844 hasConcept C109007969 @default.
- W4313388844 hasConcept C114793014 @default.
- W4313388844 hasConcept C119857082 @default.
- W4313388844 hasConcept C127313418 @default.
- W4313388844 hasConcept C127413603 @default.
- W4313388844 hasConcept C146978453 @default.
- W4313388844 hasConcept C150547873 @default.
- W4313388844 hasConcept C153294291 @default.
- W4313388844 hasConcept C19269812 @default.
- W4313388844 hasConcept C197046000 @default.
- W4313388844 hasConcept C205649164 @default.
- W4313388844 hasConcept C2983043445 @default.
- W4313388844 hasConcept C3018601724 @default.
- W4313388844 hasConcept C39432304 @default.
- W4313388844 hasConcept C41008148 @default.
- W4313388844 hasConcept C62649853 @default.
- W4313388844 hasConcept C64649846 @default.
- W4313388844 hasConceptScore W4313388844C109007969 @default.
- W4313388844 hasConceptScore W4313388844C114793014 @default.
- W4313388844 hasConceptScore W4313388844C119857082 @default.
- W4313388844 hasConceptScore W4313388844C127313418 @default.
- W4313388844 hasConceptScore W4313388844C127413603 @default.
- W4313388844 hasConceptScore W4313388844C146978453 @default.
- W4313388844 hasConceptScore W4313388844C150547873 @default.
- W4313388844 hasConceptScore W4313388844C153294291 @default.
- W4313388844 hasConceptScore W4313388844C19269812 @default.
- W4313388844 hasConceptScore W4313388844C197046000 @default.
- W4313388844 hasConceptScore W4313388844C205649164 @default.