Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313389181> ?p ?o ?g. }
- W4313389181 endingPage "203" @default.
- W4313389181 startingPage "203" @default.
- W4313389181 abstract "In the field of intelligent robot and automatic drive, the task of license plate detection and recognition (LPDR) are undertaken by mobile edge computing (MEC) chips instead of large graphics processing unit (GPU) servers. For this kind of small computing capacity MEC chip, a light LPDR network with good performance in accuracy and speed is urgently needed. Contemporary deep learning (DL) LP recognition methods use two-step (i.e., detection network and recognition network) or three-step (i.e., detection network, character segmentation method, and recognition network) strategies, which will result in loading two networks on the MEC chip and inserting many complex steps. To overcome this problem, this study presents an end-to-end light LPDR network. Firstly, this network adopts the light VGG16 structure to reduce the number of feature maps and adds channel attention at the third, fifth, and eighth layers. It can reduce the number of model parameters without losing the accuracy of prediction. Secondly, the prediction of the LP rotated angle is added, which can improve the matching between the bounding box and the LP. Thirdly, the LP part of the feature map is cropped by the relative position of detection module, and the region-of-interest (ROI) pooling and fusion are performed. Seven classifiers are then used to identify the LP characters through the third step’s fusion feature. At last, experiments show that the accuracy of the proposed network reaches 91.5 and that the speed reaches 63 fps. In the HiSilicon 3516DV300 and the Rockchip Rv1126 Mobile edge computing chips, the speed of the network has been tested for 15 fps." @default.
- W4313389181 created "2023-01-06" @default.
- W4313389181 creator A5008844678 @default.
- W4313389181 creator A5025781034 @default.
- W4313389181 creator A5085684364 @default.
- W4313389181 date "2022-12-31" @default.
- W4313389181 modified "2023-10-14" @default.
- W4313389181 title "End-to-End Light License Plate Detection and Recognition Method Based on Deep Learning" @default.
- W4313389181 cites W1536680647 @default.
- W4313389181 cites W1966809579 @default.
- W4313389181 cites W1998776006 @default.
- W4313389181 cites W2004963761 @default.
- W4313389181 cites W2039177567 @default.
- W4313389181 cites W2075660460 @default.
- W4313389181 cites W2102608210 @default.
- W4313389181 cites W2120866931 @default.
- W4313389181 cites W2404692435 @default.
- W4313389181 cites W2543461915 @default.
- W4313389181 cites W2562308138 @default.
- W4313389181 cites W2570564292 @default.
- W4313389181 cites W2610399004 @default.
- W4313389181 cites W2765100849 @default.
- W4313389181 cites W2767598133 @default.
- W4313389181 cites W2783801684 @default.
- W4313389181 cites W2786178036 @default.
- W4313389181 cites W2788907956 @default.
- W4313389181 cites W2897185734 @default.
- W4313389181 cites W2901656266 @default.
- W4313389181 cites W2952248599 @default.
- W4313389181 cites W2962829835 @default.
- W4313389181 cites W2963745697 @default.
- W4313389181 cites W2966892372 @default.
- W4313389181 cites W3004408462 @default.
- W4313389181 cites W3004482644 @default.
- W4313389181 cites W3009457572 @default.
- W4313389181 cites W3093715879 @default.
- W4313389181 cites W3106250896 @default.
- W4313389181 cites W3122328354 @default.
- W4313389181 cites W3159184664 @default.
- W4313389181 cites W4213346229 @default.
- W4313389181 cites W4306916604 @default.
- W4313389181 cites W639708223 @default.
- W4313389181 cites W4307263152 @default.
- W4313389181 doi "https://doi.org/10.3390/electronics12010203" @default.
- W4313389181 hasPublicationYear "2022" @default.
- W4313389181 type Work @default.
- W4313389181 citedByCount "0" @default.
- W4313389181 crossrefType "journal-article" @default.
- W4313389181 hasAuthorship W4313389181A5008844678 @default.
- W4313389181 hasAuthorship W4313389181A5025781034 @default.
- W4313389181 hasAuthorship W4313389181A5085684364 @default.
- W4313389181 hasBestOaLocation W43133891811 @default.
- W4313389181 hasConcept C108583219 @default.
- W4313389181 hasConcept C115961682 @default.
- W4313389181 hasConcept C138885662 @default.
- W4313389181 hasConcept C147037132 @default.
- W4313389181 hasConcept C153180895 @default.
- W4313389181 hasConcept C154945302 @default.
- W4313389181 hasConcept C193536780 @default.
- W4313389181 hasConcept C19609008 @default.
- W4313389181 hasConcept C2776401178 @default.
- W4313389181 hasConcept C31972630 @default.
- W4313389181 hasConcept C41008148 @default.
- W4313389181 hasConcept C41895202 @default.
- W4313389181 hasConcept C70437156 @default.
- W4313389181 hasConcept C89600930 @default.
- W4313389181 hasConcept C9417928 @default.
- W4313389181 hasConceptScore W4313389181C108583219 @default.
- W4313389181 hasConceptScore W4313389181C115961682 @default.
- W4313389181 hasConceptScore W4313389181C138885662 @default.
- W4313389181 hasConceptScore W4313389181C147037132 @default.
- W4313389181 hasConceptScore W4313389181C153180895 @default.
- W4313389181 hasConceptScore W4313389181C154945302 @default.
- W4313389181 hasConceptScore W4313389181C193536780 @default.
- W4313389181 hasConceptScore W4313389181C19609008 @default.
- W4313389181 hasConceptScore W4313389181C2776401178 @default.
- W4313389181 hasConceptScore W4313389181C31972630 @default.
- W4313389181 hasConceptScore W4313389181C41008148 @default.
- W4313389181 hasConceptScore W4313389181C41895202 @default.
- W4313389181 hasConceptScore W4313389181C70437156 @default.
- W4313389181 hasConceptScore W4313389181C89600930 @default.
- W4313389181 hasConceptScore W4313389181C9417928 @default.
- W4313389181 hasFunder F4320335777 @default.
- W4313389181 hasIssue "1" @default.
- W4313389181 hasLocation W43133891811 @default.
- W4313389181 hasLocation W43133891812 @default.
- W4313389181 hasOpenAccess W4313389181 @default.
- W4313389181 hasPrimaryLocation W43133891811 @default.
- W4313389181 hasRelatedWork W1669643531 @default.
- W4313389181 hasRelatedWork W2005437358 @default.
- W4313389181 hasRelatedWork W2008656436 @default.
- W4313389181 hasRelatedWork W2023558673 @default.
- W4313389181 hasRelatedWork W2134924024 @default.
- W4313389181 hasRelatedWork W2147832946 @default.
- W4313389181 hasRelatedWork W2517104666 @default.
- W4313389181 hasRelatedWork W2790662084 @default.
- W4313389181 hasRelatedWork W3025711542 @default.
- W4313389181 hasRelatedWork W4297916899 @default.