Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313389249> ?p ?o ?g. }
- W4313389249 endingPage "465" @default.
- W4313389249 startingPage "465" @default.
- W4313389249 abstract "There is a large amount of drilling core data in the Mackay River oil sands block in Canada, and the accurate identification of facies from the cores is important and necessary for the understanding of the subsurface reservoir. The traditional recognition method of facies from cores is by human work and is very time consuming. Furthermore, the results are different according to different geologists because of the subjective judgment criterion. An efficient and objective method is important to solve the above problem. In this paper, the deep learning image-recognition algorithm is used to automatically and intelligently recognize the facies type from the core image. Through a series of high-reliability preprocessing operations, such as cropping, segmentation, rotation transformation, and noise removal of the original core image, that have been manually identified, the key feature information in the images is extracted based on the ResNet50 convolutional neural network. On the dataset of about 200 core images from 13 facies, an intelligent identification system of facies from core images is constructed, which realizes automatic facies identification from core images. Comparing this method with traditional convolutional neural networks and support vector machines (SVM), the results show that the recognition accuracy of this model is as high as 91.12%, which is higher than the other two models. It is also shown that for a relatively special dataset, such as core images, it is necessary to rely on their global features in order to classify them, and, with a large similarity between some of the categories, it is extremely difficult to classify them. The selection of a suitable neural network model can have a great impact on the accuracy of recognition results. Then, the recognized facies are input as hard data to construct the three-dimensional facies model, which reveals the complex heterogeneity and distribution of the subsurface reservoir for further exploration and development." @default.
- W4313389249 created "2023-01-06" @default.
- W4313389249 creator A5001264184 @default.
- W4313389249 creator A5009268385 @default.
- W4313389249 creator A5016589827 @default.
- W4313389249 creator A5042535549 @default.
- W4313389249 creator A5076025051 @default.
- W4313389249 date "2023-01-01" @default.
- W4313389249 modified "2023-09-26" @default.
- W4313389249 title "A Deep Learning Method for Facies Recognition from Core Images and Its Application: A Case Study of Mackay River Oil Sands Reservoir" @default.
- W4313389249 cites W1967023536 @default.
- W4313389249 cites W2194775991 @default.
- W4313389249 cites W2562081434 @default.
- W4313389249 cites W2762355244 @default.
- W4313389249 cites W2972718562 @default.
- W4313389249 cites W3157026854 @default.
- W4313389249 cites W3216623900 @default.
- W4313389249 doi "https://doi.org/10.3390/en16010465" @default.
- W4313389249 hasPublicationYear "2023" @default.
- W4313389249 type Work @default.
- W4313389249 citedByCount "0" @default.
- W4313389249 crossrefType "journal-article" @default.
- W4313389249 hasAuthorship W4313389249A5001264184 @default.
- W4313389249 hasAuthorship W4313389249A5009268385 @default.
- W4313389249 hasAuthorship W4313389249A5016589827 @default.
- W4313389249 hasAuthorship W4313389249A5042535549 @default.
- W4313389249 hasAuthorship W4313389249A5076025051 @default.
- W4313389249 hasBestOaLocation W43133892491 @default.
- W4313389249 hasConcept C103278499 @default.
- W4313389249 hasConcept C104317684 @default.
- W4313389249 hasConcept C109007969 @default.
- W4313389249 hasConcept C115961682 @default.
- W4313389249 hasConcept C116834253 @default.
- W4313389249 hasConcept C12267149 @default.
- W4313389249 hasConcept C127313418 @default.
- W4313389249 hasConcept C138885662 @default.
- W4313389249 hasConcept C146588470 @default.
- W4313389249 hasConcept C151730666 @default.
- W4313389249 hasConcept C153180895 @default.
- W4313389249 hasConcept C154945302 @default.
- W4313389249 hasConcept C185592680 @default.
- W4313389249 hasConcept C204241405 @default.
- W4313389249 hasConcept C2524010 @default.
- W4313389249 hasConcept C2776401178 @default.
- W4313389249 hasConcept C2777210771 @default.
- W4313389249 hasConcept C33923547 @default.
- W4313389249 hasConcept C34736171 @default.
- W4313389249 hasConcept C41008148 @default.
- W4313389249 hasConcept C41895202 @default.
- W4313389249 hasConcept C55493867 @default.
- W4313389249 hasConcept C59822182 @default.
- W4313389249 hasConcept C81363708 @default.
- W4313389249 hasConcept C86803240 @default.
- W4313389249 hasConcept C89600930 @default.
- W4313389249 hasConceptScore W4313389249C103278499 @default.
- W4313389249 hasConceptScore W4313389249C104317684 @default.
- W4313389249 hasConceptScore W4313389249C109007969 @default.
- W4313389249 hasConceptScore W4313389249C115961682 @default.
- W4313389249 hasConceptScore W4313389249C116834253 @default.
- W4313389249 hasConceptScore W4313389249C12267149 @default.
- W4313389249 hasConceptScore W4313389249C127313418 @default.
- W4313389249 hasConceptScore W4313389249C138885662 @default.
- W4313389249 hasConceptScore W4313389249C146588470 @default.
- W4313389249 hasConceptScore W4313389249C151730666 @default.
- W4313389249 hasConceptScore W4313389249C153180895 @default.
- W4313389249 hasConceptScore W4313389249C154945302 @default.
- W4313389249 hasConceptScore W4313389249C185592680 @default.
- W4313389249 hasConceptScore W4313389249C204241405 @default.
- W4313389249 hasConceptScore W4313389249C2524010 @default.
- W4313389249 hasConceptScore W4313389249C2776401178 @default.
- W4313389249 hasConceptScore W4313389249C2777210771 @default.
- W4313389249 hasConceptScore W4313389249C33923547 @default.
- W4313389249 hasConceptScore W4313389249C34736171 @default.
- W4313389249 hasConceptScore W4313389249C41008148 @default.
- W4313389249 hasConceptScore W4313389249C41895202 @default.
- W4313389249 hasConceptScore W4313389249C55493867 @default.
- W4313389249 hasConceptScore W4313389249C59822182 @default.
- W4313389249 hasConceptScore W4313389249C81363708 @default.
- W4313389249 hasConceptScore W4313389249C86803240 @default.
- W4313389249 hasConceptScore W4313389249C89600930 @default.
- W4313389249 hasIssue "1" @default.
- W4313389249 hasLocation W43133892491 @default.
- W4313389249 hasLocation W43133892492 @default.
- W4313389249 hasOpenAccess W4313389249 @default.
- W4313389249 hasPrimaryLocation W43133892491 @default.
- W4313389249 hasRelatedWork W2041399278 @default.
- W4313389249 hasRelatedWork W2136184105 @default.
- W4313389249 hasRelatedWork W2996933976 @default.
- W4313389249 hasRelatedWork W3013515612 @default.
- W4313389249 hasRelatedWork W3052481912 @default.
- W4313389249 hasRelatedWork W3208266890 @default.
- W4313389249 hasRelatedWork W4200528772 @default.
- W4313389249 hasRelatedWork W2187500075 @default.
- W4313389249 hasRelatedWork W2345184372 @default.
- W4313389249 hasRelatedWork W2736898786 @default.
- W4313389249 hasVolume "16" @default.
- W4313389249 isParatext "false" @default.
- W4313389249 isRetracted "false" @default.