Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313389713> ?p ?o ?g. }
- W4313389713 abstract "Introduction: Differential equations governed compartmental models are known for their ability to simulate epidemiological dynamics and provide highly accurate descriptive and predictive results. However, identifying the corresponding parameters of flow from one compartment to another in these models remains a challenging task. These parameters change over time due to the effect of interventions, virus variation and so on, thus time-varying compartmental models are required to reflect the dynamics of the epidemic and provide plausible results. Methods: In this paper, we propose an Euler iteration augmented physics-informed neural networks(called Euler-PINNs) to optimally integrates real-world reported data, epidemic laws and deep neural networks to capture the dynamics of COVID-19. The proposed Euler-PINNs method integrates the differential equations into deep neural networks by discretizing the compartmental model with suitable time-step and expressing the desired parameters as neural networks. We then define a robust and concise loss of the predicted data and the observed data for the epidemic in question and try to minimize it. In addition, a novel activation function based on Fourier theory is introduced for the Euler-PINNs method, which can deal with the inherently stochastic and noisy real-world data, leading to enhanced model performance. Results and Discussion: Furthermore, we verify the effectiveness of the Euler-PINNs method on 2020 COVID-19-related data in Minnesota, the United States, both qualitative and quantitative analyses of the simulation results demonstrate its accuracy and efficiency. Finally, we also perform predictions based on data from the early stages of the outbreak, and the experimental results demonstrate that the Euler-PINNs method remains robust on small dataset." @default.
- W4313389713 created "2023-01-06" @default.
- W4313389713 creator A5018400242 @default.
- W4313389713 creator A5021979312 @default.
- W4313389713 creator A5066820530 @default.
- W4313389713 creator A5081352122 @default.
- W4313389713 date "2022-12-19" @default.
- W4313389713 modified "2023-10-14" @default.
- W4313389713 title "Euler iteration augmented physics-informed neural networks for time-varying parameter estimation of the epidemic compartmental model" @default.
- W4313389713 cites W2062848325 @default.
- W4313389713 cites W2111072639 @default.
- W4313389713 cites W2148301044 @default.
- W4313389713 cites W2899283552 @default.
- W4313389713 cites W2914483840 @default.
- W4313389713 cites W2997165591 @default.
- W4313389713 cites W3012320055 @default.
- W4313389713 cites W3013186573 @default.
- W4313389713 cites W3013188135 @default.
- W4313389713 cites W3014468003 @default.
- W4313389713 cites W3014866318 @default.
- W4313389713 cites W3017439361 @default.
- W4313389713 cites W3018782651 @default.
- W4313389713 cites W3021026234 @default.
- W4313389713 cites W3025512159 @default.
- W4313389713 cites W3028969552 @default.
- W4313389713 cites W3033386675 @default.
- W4313389713 cites W3039828206 @default.
- W4313389713 cites W3043442870 @default.
- W4313389713 cites W3043662404 @default.
- W4313389713 cites W3087512938 @default.
- W4313389713 cites W3097391358 @default.
- W4313389713 cites W3098707277 @default.
- W4313389713 cites W3100347265 @default.
- W4313389713 cites W3106386073 @default.
- W4313389713 cites W3106891991 @default.
- W4313389713 cites W3114249691 @default.
- W4313389713 cites W3116268267 @default.
- W4313389713 cites W3162244563 @default.
- W4313389713 cites W3170003932 @default.
- W4313389713 cites W3195051481 @default.
- W4313389713 cites W3198222539 @default.
- W4313389713 cites W3202222650 @default.
- W4313389713 cites W3215344530 @default.
- W4313389713 cites W3217086243 @default.
- W4313389713 cites W4212941685 @default.
- W4313389713 cites W4214504644 @default.
- W4313389713 cites W4226239165 @default.
- W4313389713 cites W4281491535 @default.
- W4313389713 cites W4282024458 @default.
- W4313389713 cites W4308510102 @default.
- W4313389713 doi "https://doi.org/10.3389/fphy.2022.1062554" @default.
- W4313389713 hasPublicationYear "2022" @default.
- W4313389713 type Work @default.
- W4313389713 citedByCount "1" @default.
- W4313389713 countsByYear W43133897132023 @default.
- W4313389713 crossrefType "journal-article" @default.
- W4313389713 hasAuthorship W4313389713A5018400242 @default.
- W4313389713 hasAuthorship W4313389713A5021979312 @default.
- W4313389713 hasAuthorship W4313389713A5066820530 @default.
- W4313389713 hasAuthorship W4313389713A5081352122 @default.
- W4313389713 hasBestOaLocation W43133897131 @default.
- W4313389713 hasConcept C11413529 @default.
- W4313389713 hasConcept C126255220 @default.
- W4313389713 hasConcept C134306372 @default.
- W4313389713 hasConcept C154945302 @default.
- W4313389713 hasConcept C28826006 @default.
- W4313389713 hasConcept C33923547 @default.
- W4313389713 hasConcept C38409319 @default.
- W4313389713 hasConcept C41008148 @default.
- W4313389713 hasConcept C50644808 @default.
- W4313389713 hasConcept C51955184 @default.
- W4313389713 hasConcept C62884695 @default.
- W4313389713 hasConcept C73000952 @default.
- W4313389713 hasConcept C75380026 @default.
- W4313389713 hasConcept C768646 @default.
- W4313389713 hasConceptScore W4313389713C11413529 @default.
- W4313389713 hasConceptScore W4313389713C126255220 @default.
- W4313389713 hasConceptScore W4313389713C134306372 @default.
- W4313389713 hasConceptScore W4313389713C154945302 @default.
- W4313389713 hasConceptScore W4313389713C28826006 @default.
- W4313389713 hasConceptScore W4313389713C33923547 @default.
- W4313389713 hasConceptScore W4313389713C38409319 @default.
- W4313389713 hasConceptScore W4313389713C41008148 @default.
- W4313389713 hasConceptScore W4313389713C50644808 @default.
- W4313389713 hasConceptScore W4313389713C51955184 @default.
- W4313389713 hasConceptScore W4313389713C62884695 @default.
- W4313389713 hasConceptScore W4313389713C73000952 @default.
- W4313389713 hasConceptScore W4313389713C75380026 @default.
- W4313389713 hasConceptScore W4313389713C768646 @default.
- W4313389713 hasLocation W43133897131 @default.
- W4313389713 hasLocation W43133897132 @default.
- W4313389713 hasOpenAccess W4313389713 @default.
- W4313389713 hasPrimaryLocation W43133897131 @default.
- W4313389713 hasRelatedWork W2039299714 @default.
- W4313389713 hasRelatedWork W2079982921 @default.
- W4313389713 hasRelatedWork W2240084589 @default.
- W4313389713 hasRelatedWork W2509450698 @default.
- W4313389713 hasRelatedWork W2753545712 @default.
- W4313389713 hasRelatedWork W2911367846 @default.
- W4313389713 hasRelatedWork W3140944741 @default.