Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313389763> ?p ?o ?g. }
- W4313389763 abstract "Sudden unexpected death of epilepsy (SUDEP) is a catastrophic and fatal complication of epilepsy and is the primary cause of mortality in those who have uncontrolled seizures. While several multifactorial processes have been implicated including cardiac, respiratory, autonomic dysfunction leading to arrhythmia, hypoxia, and cessation of cerebral and brainstem function, the mechanisms underlying SUDEP are not completely understood. Postictal generalized electroencephalogram (EEG) suppression (PGES) is a potential risk marker for SUDEP, as studies have shown that prolonged PGES was significantly associated with a higher risk of SUDEP. Automated PGES detection techniques have been developed to efficiently obtain PGES durations for SUDEP risk assessment. However, real-world data recorded in epilepsy monitoring units (EMUs) may contain high-amplitude signals due to physiological artifacts, such as breathing, muscle, and movement artifacts, making it difficult to determine the end of PGES. In this paper, we present a hybrid approach that combines the benefits of unsupervised and supervised learning for PGES detection using multi-channel EEG recordings. A K-means clustering model is leveraged to group EEG recordings with similar artifact features. We introduce a new learning strategy for training a set of random forest (RF) models based on clustering results to improve PGES detection performance. Our approach achieved a 5-second tolerance-based detection accuracy of 64.92%, a 10-second tolerance-based detection accuracy of 79.85%, and an average predicted time distance of 8.26 seconds with 286 EEG recordings using leave-one-out (LOO) cross-validation. The results demonstrated that our hybrid approach provided better performance compared to other existing approaches." @default.
- W4313389763 created "2023-01-06" @default.
- W4313389763 creator A5016630625 @default.
- W4313389763 creator A5018640104 @default.
- W4313389763 creator A5028993840 @default.
- W4313389763 creator A5046662102 @default.
- W4313389763 creator A5049834185 @default.
- W4313389763 creator A5063163780 @default.
- W4313389763 creator A5090124814 @default.
- W4313389763 date "2022-12-19" @default.
- W4313389763 modified "2023-10-14" @default.
- W4313389763 title "A hybrid unsupervised and supervised learning approach for postictal generalized EEG suppression detection" @default.
- W4313389763 cites W1524327358 @default.
- W4313389763 cites W1589606770 @default.
- W4313389763 cites W1632222318 @default.
- W4313389763 cites W1973172826 @default.
- W4313389763 cites W1975190957 @default.
- W4313389763 cites W1976756294 @default.
- W4313389763 cites W1978437325 @default.
- W4313389763 cites W2007221293 @default.
- W4313389763 cites W2021589706 @default.
- W4313389763 cites W2024482587 @default.
- W4313389763 cites W2033172224 @default.
- W4313389763 cites W2038235993 @default.
- W4313389763 cites W2058807024 @default.
- W4313389763 cites W2065454702 @default.
- W4313389763 cites W2077640225 @default.
- W4313389763 cites W2079476861 @default.
- W4313389763 cites W2080360580 @default.
- W4313389763 cites W2101709445 @default.
- W4313389763 cites W2102338788 @default.
- W4313389763 cites W2111125935 @default.
- W4313389763 cites W2115431794 @default.
- W4313389763 cites W2128723763 @default.
- W4313389763 cites W2134050473 @default.
- W4313389763 cites W2135415803 @default.
- W4313389763 cites W2135909881 @default.
- W4313389763 cites W2144178926 @default.
- W4313389763 cites W2150387110 @default.
- W4313389763 cites W2163331567 @default.
- W4313389763 cites W2165294408 @default.
- W4313389763 cites W2168634156 @default.
- W4313389763 cites W2172144598 @default.
- W4313389763 cites W2237410055 @default.
- W4313389763 cites W2294703004 @default.
- W4313389763 cites W2299695249 @default.
- W4313389763 cites W2402431342 @default.
- W4313389763 cites W2498582720 @default.
- W4313389763 cites W2588327383 @default.
- W4313389763 cites W2767304442 @default.
- W4313389763 cites W2803437104 @default.
- W4313389763 cites W2885104924 @default.
- W4313389763 cites W2894064352 @default.
- W4313389763 cites W2911964244 @default.
- W4313389763 cites W2920791392 @default.
- W4313389763 cites W2993207219 @default.
- W4313389763 cites W3005694506 @default.
- W4313389763 cites W3026569838 @default.
- W4313389763 cites W3034193986 @default.
- W4313389763 cites W3035350226 @default.
- W4313389763 cites W3037969342 @default.
- W4313389763 cites W3082134234 @default.
- W4313389763 cites W3095898337 @default.
- W4313389763 cites W3108107453 @default.
- W4313389763 cites W3113903945 @default.
- W4313389763 cites W3115107096 @default.
- W4313389763 cites W3115316562 @default.
- W4313389763 cites W3115376248 @default.
- W4313389763 cites W3116097222 @default.
- W4313389763 cites W3119711758 @default.
- W4313389763 cites W3122940034 @default.
- W4313389763 cites W3128295684 @default.
- W4313389763 cites W3156656027 @default.
- W4313389763 cites W3163064080 @default.
- W4313389763 cites W3176534999 @default.
- W4313389763 cites W4200168485 @default.
- W4313389763 cites W4220999519 @default.
- W4313389763 cites W4292299650 @default.
- W4313389763 doi "https://doi.org/10.3389/fninf.2022.1040084" @default.
- W4313389763 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36601382" @default.
- W4313389763 hasPublicationYear "2022" @default.
- W4313389763 type Work @default.
- W4313389763 citedByCount "0" @default.
- W4313389763 crossrefType "journal-article" @default.
- W4313389763 hasAuthorship W4313389763A5016630625 @default.
- W4313389763 hasAuthorship W4313389763A5018640104 @default.
- W4313389763 hasAuthorship W4313389763A5028993840 @default.
- W4313389763 hasAuthorship W4313389763A5046662102 @default.
- W4313389763 hasAuthorship W4313389763A5049834185 @default.
- W4313389763 hasAuthorship W4313389763A5063163780 @default.
- W4313389763 hasAuthorship W4313389763A5090124814 @default.
- W4313389763 hasBestOaLocation W43133897631 @default.
- W4313389763 hasConcept C153180895 @default.
- W4313389763 hasConcept C154945302 @default.
- W4313389763 hasConcept C15744967 @default.
- W4313389763 hasConcept C169760540 @default.
- W4313389763 hasConcept C2778186239 @default.
- W4313389763 hasConcept C2779010991 @default.
- W4313389763 hasConcept C41008148 @default.
- W4313389763 hasConcept C522805319 @default.