Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313395722> ?p ?o ?g. }
- W4313395722 abstract "The high number of COVID-19 deaths is a serious threat to the world. Demographic and clinical biomarkers are significantly associated with the mortality risk of this disease. This study aimed to implement Generalized Neural Additive Model (GNAM) as an interpretable machine learning method to predict the COVID-19 mortality of patients.This cohort study included 2181 COVID-19 patients admitted from February 2020 to July 2021 in Sina and Besat hospitals in Hamadan, west of Iran. A total of 22 baseline features including patients' demographic information and clinical biomarkers were collected. Four strategies including removing missing values, mean, K-Nearest Neighbor (KNN), and Multivariate Imputation by Chained Equations (MICE) imputation methods were used to deal with missing data. Firstly, the important features for predicting binary outcome (1: death, 0: recovery) were selected using the Random Forest (RF) method. Also, synthetic minority over-sampling technique (SMOTE) method was used for handling imbalanced data. Next, considering the selected features, the predictive performance of GNAM for predicting mortality outcome was compared with logistic regression, RF, generalized additive model (GAMs), gradient boosting decision tree (GBDT), and deep neural networks (DNNs) classification models. Each model trained on fifty different subsets of a train-test dataset to ensure a model performance. The average accuracy, F1-score and area under the curve (AUC) evaluation indices were used for comparison of the predictive performance of the models.Out of the 2181 COVID-19 patients, 624 died during hospitalization and 1557 recovered. The missing rate was 3 percent for each patient. The mean age of dead patients (71.17 ± 14.44 years) was statistically significant higher than recovered patients (58.25 ± 16.52 years). Based on RF, 10 features with the highest relative importance were selected as the best influential features; including blood urea nitrogen (BUN), lymphocytes (Lym), age, blood sugar (BS), serum glutamic-oxaloacetic transaminase (SGOT), monocytes (Mono), blood creatinine (CR), neutrophils (NUT), alkaline phosphatase (ALP) and hematocrit (HCT). The results of predictive performance comparisons showed GNAM with the mean accuracy, F1-score, and mean AUC in the test dataset of 0.847, 0.691, and 0.774, respectively, had the best performance. The smooth function graphs learned from the GNAM were descending for the Lym and ascending for the other important features.Interpretable GNAM can perform well in predicting the mortality of COVID-19 patients. Therefore, the use of such a reliable model can help physicians to prioritize some important demographic and clinical biomarkers by identifying the effective features and the type of predictive trend in disease progression." @default.
- W4313395722 created "2023-01-06" @default.
- W4313395722 creator A5020895059 @default.
- W4313395722 creator A5021963211 @default.
- W4313395722 creator A5035529119 @default.
- W4313395722 creator A5068319668 @default.
- W4313395722 creator A5076156088 @default.
- W4313395722 date "2022-12-31" @default.
- W4313395722 modified "2023-10-09" @default.
- W4313395722 title "Interpretable generalized neural additive models for mortality prediction of COVID-19 hospitalized patients in Hamadan, Iran" @default.
- W4313395722 cites W1537066827 @default.
- W4313395722 cites W2006434809 @default.
- W4313395722 cites W2045263025 @default.
- W4313395722 cites W2064186732 @default.
- W4313395722 cites W2089947415 @default.
- W4313395722 cites W2096863518 @default.
- W4313395722 cites W2146404132 @default.
- W4313395722 cites W2177870565 @default.
- W4313395722 cites W2496114304 @default.
- W4313395722 cites W2806446597 @default.
- W4313395722 cites W2899750879 @default.
- W4313395722 cites W3002108456 @default.
- W4313395722 cites W3005655936 @default.
- W4313395722 cites W3008827533 @default.
- W4313395722 cites W3009314935 @default.
- W4313395722 cites W3010306050 @default.
- W4313395722 cites W3010377921 @default.
- W4313395722 cites W3011484826 @default.
- W4313395722 cites W3012849736 @default.
- W4313395722 cites W3016124709 @default.
- W4313395722 cites W3016127406 @default.
- W4313395722 cites W3017022286 @default.
- W4313395722 cites W3026888299 @default.
- W4313395722 cites W3031723755 @default.
- W4313395722 cites W3041403051 @default.
- W4313395722 cites W3046994873 @default.
- W4313395722 cites W3082631915 @default.
- W4313395722 cites W3087338713 @default.
- W4313395722 cites W3091109908 @default.
- W4313395722 cites W3092208592 @default.
- W4313395722 cites W3092436046 @default.
- W4313395722 cites W3093335254 @default.
- W4313395722 cites W3097189258 @default.
- W4313395722 cites W3105491236 @default.
- W4313395722 cites W3125213913 @default.
- W4313395722 cites W3127273378 @default.
- W4313395722 cites W3137264488 @default.
- W4313395722 cites W3162199380 @default.
- W4313395722 cites W3168811973 @default.
- W4313395722 cites W3179743174 @default.
- W4313395722 cites W3200824799 @default.
- W4313395722 cites W4200298232 @default.
- W4313395722 cites W4239138080 @default.
- W4313395722 cites W4252679093 @default.
- W4313395722 doi "https://doi.org/10.1186/s12874-022-01827-y" @default.
- W4313395722 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36585627" @default.
- W4313395722 hasPublicationYear "2022" @default.
- W4313395722 type Work @default.
- W4313395722 citedByCount "1" @default.
- W4313395722 countsByYear W43133957222023 @default.
- W4313395722 crossrefType "journal-article" @default.
- W4313395722 hasAuthorship W4313395722A5020895059 @default.
- W4313395722 hasAuthorship W4313395722A5021963211 @default.
- W4313395722 hasAuthorship W4313395722A5035529119 @default.
- W4313395722 hasAuthorship W4313395722A5068319668 @default.
- W4313395722 hasAuthorship W4313395722A5076156088 @default.
- W4313395722 hasBestOaLocation W43133957221 @default.
- W4313395722 hasConcept C105795698 @default.
- W4313395722 hasConcept C119857082 @default.
- W4313395722 hasConcept C12267149 @default.
- W4313395722 hasConcept C126322002 @default.
- W4313395722 hasConcept C151956035 @default.
- W4313395722 hasConcept C154945302 @default.
- W4313395722 hasConcept C161584116 @default.
- W4313395722 hasConcept C169258074 @default.
- W4313395722 hasConcept C2779134260 @default.
- W4313395722 hasConcept C3008058167 @default.
- W4313395722 hasConcept C33923547 @default.
- W4313395722 hasConcept C41008148 @default.
- W4313395722 hasConcept C50644808 @default.
- W4313395722 hasConcept C524204448 @default.
- W4313395722 hasConcept C58041806 @default.
- W4313395722 hasConcept C66905080 @default.
- W4313395722 hasConcept C70153297 @default.
- W4313395722 hasConcept C71924100 @default.
- W4313395722 hasConcept C84525736 @default.
- W4313395722 hasConcept C9357733 @default.
- W4313395722 hasConceptScore W4313395722C105795698 @default.
- W4313395722 hasConceptScore W4313395722C119857082 @default.
- W4313395722 hasConceptScore W4313395722C12267149 @default.
- W4313395722 hasConceptScore W4313395722C126322002 @default.
- W4313395722 hasConceptScore W4313395722C151956035 @default.
- W4313395722 hasConceptScore W4313395722C154945302 @default.
- W4313395722 hasConceptScore W4313395722C161584116 @default.
- W4313395722 hasConceptScore W4313395722C169258074 @default.
- W4313395722 hasConceptScore W4313395722C2779134260 @default.
- W4313395722 hasConceptScore W4313395722C3008058167 @default.
- W4313395722 hasConceptScore W4313395722C33923547 @default.
- W4313395722 hasConceptScore W4313395722C41008148 @default.
- W4313395722 hasConceptScore W4313395722C50644808 @default.