Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313395855> ?p ?o ?g. }
- W4313395855 endingPage "584" @default.
- W4313395855 startingPage "538" @default.
- W4313395855 abstract "Bioinspired structures are remarkable porous structures with great strength-to-weight ratios. Hence, they have been applied in various fields including biomedical, transportation, and aerospace materials, etc. Recent studies have shown the significant impact of the plastic 3D printed triply periodic minimal surfaces (TPMS) structure on the cement beam including increasing the peak load, reducing the deflection, and improving the ductility. In this study, a machine learning (ML) surrogate model has been conducted to predict the beam behavior under static bending load. At first, various combinations of plastic volume fractions and numbers of core layers have been adopted to reinforce the constituent beam. The finite element method (FEM) was implemented to investigate the influences of these reinforcement strategies. Next, the above data were employed to create the ML model. A three-process assessment was proposed to achieve the most suitable model for the present problem, these processes were the model hyperparameter tuning, the performance assessment, and the handling overfitting with deep learning (DL) techniques. Consequently, both beam peak loads and maximum deflections were proportional to the volume fraction. The increment in TPMS layers could lead to the enhancement in both traits but with a nonlinear relationship. Furthermore, each trait may be a ceiling value that could not be exceeded with a specific volume fraction despite any number of layers. This conclusion was indicated by the surrogate model predictions. The final model in this study could deal with noisy data from FEM and with the support of a new early stopping condition, excellent performance could be found on both train and test data. The maximum deviations of 2.5% and 3.5% for peak loads and maximum midpoint displacements, respectively, have verified the robustness of the present surrogate model.
 
" @default.
- W4313395855 created "2023-01-06" @default.
- W4313395855 creator A5002241836 @default.
- W4313395855 creator A5024536541 @default.
- W4313395855 creator A5063040294 @default.
- W4313395855 creator A5080330988 @default.
- W4313395855 date "2022-12-31" @default.
- W4313395855 modified "2023-10-18" @default.
- W4313395855 title "Machine learning for predicting mechanical behavior of concrete beams with 3D printed TPMS" @default.
- W4313395855 cites W2028070629 @default.
- W4313395855 cites W2050117885 @default.
- W4313395855 cites W2109563136 @default.
- W4313395855 cites W2318848228 @default.
- W4313395855 cites W2588253348 @default.
- W4313395855 cites W2588363712 @default.
- W4313395855 cites W2604368432 @default.
- W4313395855 cites W2610613156 @default.
- W4313395855 cites W2729750142 @default.
- W4313395855 cites W2774200541 @default.
- W4313395855 cites W2779341497 @default.
- W4313395855 cites W2782817064 @default.
- W4313395855 cites W2789271228 @default.
- W4313395855 cites W2793435880 @default.
- W4313395855 cites W2889316653 @default.
- W4313395855 cites W2961886349 @default.
- W4313395855 cites W2978281462 @default.
- W4313395855 cites W2998847955 @default.
- W4313395855 cites W2999502409 @default.
- W4313395855 cites W3000461720 @default.
- W4313395855 cites W3010025194 @default.
- W4313395855 cites W3015960903 @default.
- W4313395855 cites W3037631294 @default.
- W4313395855 cites W3090613895 @default.
- W4313395855 cites W3093181205 @default.
- W4313395855 cites W3093775993 @default.
- W4313395855 cites W3093895805 @default.
- W4313395855 cites W3120753723 @default.
- W4313395855 cites W3127779299 @default.
- W4313395855 cites W3128410433 @default.
- W4313395855 cites W3137626248 @default.
- W4313395855 cites W3155176520 @default.
- W4313395855 cites W3196654627 @default.
- W4313395855 cites W3209589796 @default.
- W4313395855 cites W3216271610 @default.
- W4313395855 cites W4225095248 @default.
- W4313395855 cites W4225319043 @default.
- W4313395855 cites W4285305347 @default.
- W4313395855 cites W4286510374 @default.
- W4313395855 doi "https://doi.org/10.15625/0866-7136/17999" @default.
- W4313395855 hasPublicationYear "2022" @default.
- W4313395855 type Work @default.
- W4313395855 citedByCount "1" @default.
- W4313395855 countsByYear W43133958552023 @default.
- W4313395855 crossrefType "journal-article" @default.
- W4313395855 hasAuthorship W4313395855A5002241836 @default.
- W4313395855 hasAuthorship W4313395855A5024536541 @default.
- W4313395855 hasAuthorship W4313395855A5063040294 @default.
- W4313395855 hasAuthorship W4313395855A5080330988 @default.
- W4313395855 hasBestOaLocation W43133958551 @default.
- W4313395855 hasConcept C120665830 @default.
- W4313395855 hasConcept C121332964 @default.
- W4313395855 hasConcept C127413603 @default.
- W4313395855 hasConcept C135628077 @default.
- W4313395855 hasConcept C158622935 @default.
- W4313395855 hasConcept C159985019 @default.
- W4313395855 hasConcept C168834538 @default.
- W4313395855 hasConcept C192562407 @default.
- W4313395855 hasConcept C2781355719 @default.
- W4313395855 hasConcept C41008148 @default.
- W4313395855 hasConcept C62520636 @default.
- W4313395855 hasConcept C65590680 @default.
- W4313395855 hasConcept C66938386 @default.
- W4313395855 hasConcept C78519656 @default.
- W4313395855 hasConceptScore W4313395855C120665830 @default.
- W4313395855 hasConceptScore W4313395855C121332964 @default.
- W4313395855 hasConceptScore W4313395855C127413603 @default.
- W4313395855 hasConceptScore W4313395855C135628077 @default.
- W4313395855 hasConceptScore W4313395855C158622935 @default.
- W4313395855 hasConceptScore W4313395855C159985019 @default.
- W4313395855 hasConceptScore W4313395855C168834538 @default.
- W4313395855 hasConceptScore W4313395855C192562407 @default.
- W4313395855 hasConceptScore W4313395855C2781355719 @default.
- W4313395855 hasConceptScore W4313395855C41008148 @default.
- W4313395855 hasConceptScore W4313395855C62520636 @default.
- W4313395855 hasConceptScore W4313395855C65590680 @default.
- W4313395855 hasConceptScore W4313395855C66938386 @default.
- W4313395855 hasConceptScore W4313395855C78519656 @default.
- W4313395855 hasFunder F4320328994 @default.
- W4313395855 hasIssue "4" @default.
- W4313395855 hasLocation W43133958551 @default.
- W4313395855 hasOpenAccess W4313395855 @default.
- W4313395855 hasPrimaryLocation W43133958551 @default.
- W4313395855 hasRelatedWork W2014315543 @default.
- W4313395855 hasRelatedWork W2032385735 @default.
- W4313395855 hasRelatedWork W2034806034 @default.
- W4313395855 hasRelatedWork W2039999818 @default.
- W4313395855 hasRelatedWork W2051157305 @default.
- W4313395855 hasRelatedWork W2102605029 @default.