Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313395921> ?p ?o ?g. }
- W4313395921 endingPage "JAMDSM0006" @default.
- W4313395921 startingPage "JAMDSM0006" @default.
- W4313395921 abstract "Bending angle obtained in laser forming process is much smaller than that in conventional die pressing or roller bending processes. Therefore, multi-stage forming is necessary to form deep drawn shapes and/or complex shapes by laser forming. However, laser irradiation varies material properties, posture, and stiffness of metal plates, and those influences are accumulated during the consecutive stages of process. Thus, thermo-elasto-plastic deformation models in theoretical analysis cannot predict the final shape precisely. Regarding this problem, authors propose a laser forming simulator, which employs the artificial neural network to correlate the process parameters and the deformation of metal plates, in this study. Teaching data for machine learning of the neural network is collected through the multi-stage laser bending experiments with stainless-steel plates and a high-power diode laser. The trained network is used to simulate the plate deformation to demonstrate the feasibility of proposed method. And the influences of network structure on machine learning are investigated, and the influences of conditions are discussed in aspect of prediction accuracy. Trained neural network acquired a relationship between the irradiating conditions and the deformation of plates, and work as a simulator to predict the shape of plates formed by consecutive bent at laser scanning paths. Prediction accuracy of the simulator was same as the accuracy of shape obtained by laser bending experiments." @default.
- W4313395921 created "2023-01-06" @default.
- W4313395921 creator A5038256918 @default.
- W4313395921 creator A5040021672 @default.
- W4313395921 creator A5047751068 @default.
- W4313395921 creator A5063242601 @default.
- W4313395921 creator A5068351073 @default.
- W4313395921 creator A5084871357 @default.
- W4313395921 date "2023-01-01" @default.
- W4313395921 modified "2023-10-18" @default.
- W4313395921 title "A machine learning approach for simulation of multi-stage laser forming process" @default.
- W4313395921 cites W1968189173 @default.
- W4313395921 cites W1969486937 @default.
- W4313395921 cites W1978702191 @default.
- W4313395921 cites W1978984712 @default.
- W4313395921 cites W1986125152 @default.
- W4313395921 cites W1998252882 @default.
- W4313395921 cites W1998442441 @default.
- W4313395921 cites W2022799275 @default.
- W4313395921 cites W2030798199 @default.
- W4313395921 cites W2031761709 @default.
- W4313395921 cites W2048097651 @default.
- W4313395921 cites W2057757435 @default.
- W4313395921 cites W2066687713 @default.
- W4313395921 cites W2068471853 @default.
- W4313395921 cites W2075363448 @default.
- W4313395921 cites W2078055816 @default.
- W4313395921 cites W2082990473 @default.
- W4313395921 cites W2083929644 @default.
- W4313395921 cites W2090983447 @default.
- W4313395921 cites W2125557234 @default.
- W4313395921 cites W2162807413 @default.
- W4313395921 cites W2273824830 @default.
- W4313395921 cites W2317723057 @default.
- W4313395921 cites W2317854441 @default.
- W4313395921 cites W2320742844 @default.
- W4313395921 cites W2334006699 @default.
- W4313395921 cites W2487649783 @default.
- W4313395921 cites W2892554003 @default.
- W4313395921 cites W2943136460 @default.
- W4313395921 cites W2950694741 @default.
- W4313395921 cites W2971360620 @default.
- W4313395921 cites W3135441751 @default.
- W4313395921 doi "https://doi.org/10.1299/jamdsm.2023jamdsm0006" @default.
- W4313395921 hasPublicationYear "2023" @default.
- W4313395921 type Work @default.
- W4313395921 citedByCount "0" @default.
- W4313395921 crossrefType "journal-article" @default.
- W4313395921 hasAuthorship W4313395921A5038256918 @default.
- W4313395921 hasAuthorship W4313395921A5040021672 @default.
- W4313395921 hasAuthorship W4313395921A5047751068 @default.
- W4313395921 hasAuthorship W4313395921A5063242601 @default.
- W4313395921 hasAuthorship W4313395921A5068351073 @default.
- W4313395921 hasAuthorship W4313395921A5084871357 @default.
- W4313395921 hasBestOaLocation W43133959211 @default.
- W4313395921 hasConcept C111919701 @default.
- W4313395921 hasConcept C120665830 @default.
- W4313395921 hasConcept C121332964 @default.
- W4313395921 hasConcept C127413603 @default.
- W4313395921 hasConcept C128172907 @default.
- W4313395921 hasConcept C139321929 @default.
- W4313395921 hasConcept C154945302 @default.
- W4313395921 hasConcept C159985019 @default.
- W4313395921 hasConcept C192562407 @default.
- W4313395921 hasConcept C200649887 @default.
- W4313395921 hasConcept C204366326 @default.
- W4313395921 hasConcept C2779372316 @default.
- W4313395921 hasConcept C41008148 @default.
- W4313395921 hasConcept C50644808 @default.
- W4313395921 hasConcept C520434653 @default.
- W4313395921 hasConcept C66938386 @default.
- W4313395921 hasConcept C78519656 @default.
- W4313395921 hasConcept C87210426 @default.
- W4313395921 hasConcept C98045186 @default.
- W4313395921 hasConceptScore W4313395921C111919701 @default.
- W4313395921 hasConceptScore W4313395921C120665830 @default.
- W4313395921 hasConceptScore W4313395921C121332964 @default.
- W4313395921 hasConceptScore W4313395921C127413603 @default.
- W4313395921 hasConceptScore W4313395921C128172907 @default.
- W4313395921 hasConceptScore W4313395921C139321929 @default.
- W4313395921 hasConceptScore W4313395921C154945302 @default.
- W4313395921 hasConceptScore W4313395921C159985019 @default.
- W4313395921 hasConceptScore W4313395921C192562407 @default.
- W4313395921 hasConceptScore W4313395921C200649887 @default.
- W4313395921 hasConceptScore W4313395921C204366326 @default.
- W4313395921 hasConceptScore W4313395921C2779372316 @default.
- W4313395921 hasConceptScore W4313395921C41008148 @default.
- W4313395921 hasConceptScore W4313395921C50644808 @default.
- W4313395921 hasConceptScore W4313395921C520434653 @default.
- W4313395921 hasConceptScore W4313395921C66938386 @default.
- W4313395921 hasConceptScore W4313395921C78519656 @default.
- W4313395921 hasConceptScore W4313395921C87210426 @default.
- W4313395921 hasConceptScore W4313395921C98045186 @default.
- W4313395921 hasIssue "1" @default.
- W4313395921 hasLocation W43133959211 @default.
- W4313395921 hasOpenAccess W4313395921 @default.
- W4313395921 hasPrimaryLocation W43133959211 @default.
- W4313395921 hasRelatedWork W2031535833 @default.