Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313396337> ?p ?o ?g. }
- W4313396337 abstract "Purpose The crude oil supply chain (COSC) is one of the most complex and largest supply chains in the world. It is easily vulnerable to extreme events. Recently, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (often known as COVID-19) pandemic created a massive imbalance between supply and demand which caused significant price fluctuations. The purpose of this study is to explore the influential factors affecting the international COSC in terms of consumption, production and price. Furthermore, it develops a model to predict the international crude oil price during disease outbreaks using Random Forest (RF) regression. Design/methodology/approach This study uses both qualitative and quantitative approaches. A qualitative study is conducted using a literature review to explore the influential factors on COSC. All the data are extracted from Web sources. In addition to COVID-19, four other diseases are considered to optimize the accuracy of predictive results. A principal component analysis is deployed to reduce the number of variables. A forecasting model is developed using RF regression. Findings The findings of the qualitative analysis characterize the factors that influence international COSC. The findings of quantitative analysis emphasize that production and consumption have a higher contribution to the variance of the data set. Also, this study found that the impact caused to crude oil price varies with the region. Most importantly, the model introduced using the RF technique provides a high predictive ability in short horizons such as infectious diseases. This study delivers future directions and insights to researchers and practitioners to expand the study further. Originality/value This is one of the few available pieces of research which uses the RF method in the context of crude oil price forecasting. Additionally, this study examines international COSC in the events of emergencies, specifically disease outbreaks using machine learning techniques." @default.
- W4313396337 created "2023-01-06" @default.
- W4313396337 creator A5001091220 @default.
- W4313396337 creator A5016319870 @default.
- W4313396337 creator A5020325051 @default.
- W4313396337 creator A5049389048 @default.
- W4313396337 creator A5077568085 @default.
- W4313396337 date "2022-12-20" @default.
- W4313396337 modified "2023-10-07" @default.
- W4313396337 title "Modelling the impact of disease outbreaks on the international crude oil supply chain using Random Forest regression" @default.
- W4313396337 cites W1142726021 @default.
- W4313396337 cites W1953820728 @default.
- W4313396337 cites W1966935273 @default.
- W4313396337 cites W1973809982 @default.
- W4313396337 cites W1983609473 @default.
- W4313396337 cites W1988620329 @default.
- W4313396337 cites W1996796857 @default.
- W4313396337 cites W2013285825 @default.
- W4313396337 cites W2016539749 @default.
- W4313396337 cites W2034556874 @default.
- W4313396337 cites W2034717186 @default.
- W4313396337 cites W2088041993 @default.
- W4313396337 cites W2124098697 @default.
- W4313396337 cites W2157433151 @default.
- W4313396337 cites W2167565958 @default.
- W4313396337 cites W2216946510 @default.
- W4313396337 cites W2348348371 @default.
- W4313396337 cites W2554752716 @default.
- W4313396337 cites W2620775452 @default.
- W4313396337 cites W2622999711 @default.
- W4313396337 cites W2758620441 @default.
- W4313396337 cites W2760894977 @default.
- W4313396337 cites W2791462690 @default.
- W4313396337 cites W2801709052 @default.
- W4313396337 cites W2905541126 @default.
- W4313396337 cites W2911964244 @default.
- W4313396337 cites W2931144334 @default.
- W4313396337 cites W2942063634 @default.
- W4313396337 cites W2955217549 @default.
- W4313396337 cites W2956866120 @default.
- W4313396337 cites W2959922025 @default.
- W4313396337 cites W2970470316 @default.
- W4313396337 cites W2986095642 @default.
- W4313396337 cites W2992772168 @default.
- W4313396337 cites W3003320213 @default.
- W4313396337 cites W3024795356 @default.
- W4313396337 cites W3035970024 @default.
- W4313396337 cites W3040729499 @default.
- W4313396337 cites W3102869948 @default.
- W4313396337 cites W3124797040 @default.
- W4313396337 cites W3125979026 @default.
- W4313396337 cites W3158993855 @default.
- W4313396337 cites W3196197434 @default.
- W4313396337 cites W3203895923 @default.
- W4313396337 cites W388323479 @default.
- W4313396337 cites W4312808520 @default.
- W4313396337 doi "https://doi.org/10.1108/ijesm-11-2021-0019" @default.
- W4313396337 hasPublicationYear "2022" @default.
- W4313396337 type Work @default.
- W4313396337 citedByCount "5" @default.
- W4313396337 countsByYear W43133963372023 @default.
- W4313396337 crossrefType "journal-article" @default.
- W4313396337 hasAuthorship W4313396337A5001091220 @default.
- W4313396337 hasAuthorship W4313396337A5016319870 @default.
- W4313396337 hasAuthorship W4313396337A5020325051 @default.
- W4313396337 hasAuthorship W4313396337A5049389048 @default.
- W4313396337 hasAuthorship W4313396337A5077568085 @default.
- W4313396337 hasConcept C105795698 @default.
- W4313396337 hasConcept C108713360 @default.
- W4313396337 hasConcept C116675565 @default.
- W4313396337 hasConcept C119857082 @default.
- W4313396337 hasConcept C144024400 @default.
- W4313396337 hasConcept C144133560 @default.
- W4313396337 hasConcept C149782125 @default.
- W4313396337 hasConcept C152877465 @default.
- W4313396337 hasConcept C159047783 @default.
- W4313396337 hasConcept C162324750 @default.
- W4313396337 hasConcept C162853370 @default.
- W4313396337 hasConcept C169258074 @default.
- W4313396337 hasConcept C30772137 @default.
- W4313396337 hasConcept C33923547 @default.
- W4313396337 hasConcept C36289849 @default.
- W4313396337 hasConcept C41008148 @default.
- W4313396337 hasConcept C71924100 @default.
- W4313396337 hasConcept C83546350 @default.
- W4313396337 hasConceptScore W4313396337C105795698 @default.
- W4313396337 hasConceptScore W4313396337C108713360 @default.
- W4313396337 hasConceptScore W4313396337C116675565 @default.
- W4313396337 hasConceptScore W4313396337C119857082 @default.
- W4313396337 hasConceptScore W4313396337C144024400 @default.
- W4313396337 hasConceptScore W4313396337C144133560 @default.
- W4313396337 hasConceptScore W4313396337C149782125 @default.
- W4313396337 hasConceptScore W4313396337C152877465 @default.
- W4313396337 hasConceptScore W4313396337C159047783 @default.
- W4313396337 hasConceptScore W4313396337C162324750 @default.
- W4313396337 hasConceptScore W4313396337C162853370 @default.
- W4313396337 hasConceptScore W4313396337C169258074 @default.
- W4313396337 hasConceptScore W4313396337C30772137 @default.
- W4313396337 hasConceptScore W4313396337C33923547 @default.
- W4313396337 hasConceptScore W4313396337C36289849 @default.