Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313396346> ?p ?o ?g. }
- W4313396346 endingPage "316" @default.
- W4313396346 startingPage "299" @default.
- W4313396346 abstract "Abstract Data‐driven techniques are used extensively for hydrologic time‐series prediction. We created various data‐driven models (DDMs) based on machine learning: long short‐term memory (LSTM), support vector regression (SVR), extreme learning machines, and an artificial neural network with backpropagation, to define the optimal approach to predicting streamflow time series in the Carson River (California, USA) and Montmorency (Canada) catchments. The moderate resolution imaging spectroradiometer (MODIS) snow‐coverage dataset was applied to improve the streamflow estimate. In addition to the DDMs, the conceptual snowmelt runoff model was applied to simulate and forecast daily streamflow. The four main predictor variables, namely snow‐coverage (S‐C), precipitation ( P ), maximum temperature ( T max ), and minimum temperature ( T min ), and their corresponding values for each river basin, were obtained from National Climatic Data Center and National Snow and Ice Data Center to develop the model. The most relevant predictor variable was chosen using the support vector machine‐recursive feature elimination feature selection approach. The results show that incorporating the MODIS snow‐coverage dataset improves the models' prediction accuracies in the snowmelt‐dominated basin. SVR and LSTM exhibited the best performances (root mean square error = 8.63 and 9.80) using monthly and daily snowmelt time series, respectively. In summary, machine learning is a reliable method to forecast runoff as it can be employed in global climate forecasts that require high‐volume data processing." @default.
- W4313396346 created "2023-01-06" @default.
- W4313396346 creator A5027962310 @default.
- W4313396346 creator A5033592648 @default.
- W4313396346 creator A5048349794 @default.
- W4313396346 creator A5048377996 @default.
- W4313396346 creator A5060128189 @default.
- W4313396346 creator A5063589593 @default.
- W4313396346 date "2022-12-30" @default.
- W4313396346 modified "2023-09-30" @default.
- W4313396346 title "AI‐based runoff simulation based on remote sensing observations: A case study of two river basins in the United States and Canada" @default.
- W4313396346 cites W1971841374 @default.
- W4313396346 cites W1974767017 @default.
- W4313396346 cites W1984129257 @default.
- W4313396346 cites W2001991385 @default.
- W4313396346 cites W2003623399 @default.
- W4313396346 cites W2005403210 @default.
- W4313396346 cites W2015517331 @default.
- W4313396346 cites W2018369970 @default.
- W4313396346 cites W2033904036 @default.
- W4313396346 cites W2039049978 @default.
- W4313396346 cites W2046216120 @default.
- W4313396346 cites W2048329679 @default.
- W4313396346 cites W2049387654 @default.
- W4313396346 cites W2057018326 @default.
- W4313396346 cites W2058388441 @default.
- W4313396346 cites W2058998445 @default.
- W4313396346 cites W2059393002 @default.
- W4313396346 cites W2064675550 @default.
- W4313396346 cites W2072462334 @default.
- W4313396346 cites W2111072639 @default.
- W4313396346 cites W2128583511 @default.
- W4313396346 cites W2139479528 @default.
- W4313396346 cites W2147647954 @default.
- W4313396346 cites W2147746661 @default.
- W4313396346 cites W2149081460 @default.
- W4313396346 cites W2151436713 @default.
- W4313396346 cites W2153272791 @default.
- W4313396346 cites W2262639697 @default.
- W4313396346 cites W2323268414 @default.
- W4313396346 cites W2527215258 @default.
- W4313396346 cites W2593080009 @default.
- W4313396346 cites W2597970394 @default.
- W4313396346 cites W2765692959 @default.
- W4313396346 cites W2768607187 @default.
- W4313396346 cites W2815792770 @default.
- W4313396346 cites W2887065738 @default.
- W4313396346 cites W2889148872 @default.
- W4313396346 cites W2947688643 @default.
- W4313396346 cites W2972371821 @default.
- W4313396346 cites W2991306453 @default.
- W4313396346 cites W2995748937 @default.
- W4313396346 cites W3000090424 @default.
- W4313396346 cites W3000284738 @default.
- W4313396346 cites W3007162143 @default.
- W4313396346 cites W3011216618 @default.
- W4313396346 cites W3015940208 @default.
- W4313396346 cites W3028826213 @default.
- W4313396346 cites W3080631191 @default.
- W4313396346 cites W3080705895 @default.
- W4313396346 cites W3081804748 @default.
- W4313396346 cites W3086210877 @default.
- W4313396346 cites W3094193625 @default.
- W4313396346 cites W3101203587 @default.
- W4313396346 cites W3102480713 @default.
- W4313396346 cites W3105432036 @default.
- W4313396346 cites W3111982301 @default.
- W4313396346 cites W3118372338 @default.
- W4313396346 cites W3132382781 @default.
- W4313396346 cites W3136420364 @default.
- W4313396346 cites W3138687745 @default.
- W4313396346 cites W3157033649 @default.
- W4313396346 cites W3159760273 @default.
- W4313396346 cites W3159834390 @default.
- W4313396346 cites W3161929512 @default.
- W4313396346 cites W3162538444 @default.
- W4313396346 cites W3162613241 @default.
- W4313396346 cites W3165653978 @default.
- W4313396346 cites W4221033692 @default.
- W4313396346 cites W4239510810 @default.
- W4313396346 cites W4287833909 @default.
- W4313396346 doi "https://doi.org/10.1111/1752-1688.13098" @default.
- W4313396346 hasPublicationYear "2022" @default.
- W4313396346 type Work @default.
- W4313396346 citedByCount "0" @default.
- W4313396346 crossrefType "journal-article" @default.
- W4313396346 hasAuthorship W4313396346A5027962310 @default.
- W4313396346 hasAuthorship W4313396346A5033592648 @default.
- W4313396346 hasAuthorship W4313396346A5048349794 @default.
- W4313396346 hasAuthorship W4313396346A5048377996 @default.
- W4313396346 hasAuthorship W4313396346A5060128189 @default.
- W4313396346 hasAuthorship W4313396346A5063589593 @default.
- W4313396346 hasConcept C105795698 @default.
- W4313396346 hasConcept C107054158 @default.
- W4313396346 hasConcept C119857082 @default.
- W4313396346 hasConcept C12267149 @default.
- W4313396346 hasConcept C126645576 @default.
- W4313396346 hasConcept C127313418 @default.