Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313396405> ?p ?o ?g. }
- W4313396405 abstract "Abstract The ever-increasing capability of computational methods has resulted in their general acceptance as a key part of the materials design process. Traditionally this has been achieved using a so-called computational funnel, where increasingly accurate - and expensive – methodologies are used to winnow down a large initial library to a size which can be tackled by experiment. In this paper we present an alternative approach, using a multi-output Gaussian process to fuse the information gained from both experimental and computational methods into a single, dynamically evolving design. Common challenges with computational funnels, such as mis-ordering methods, and the inclusion of non-informative steps are avoided by learning the relationships between methods on the fly. We show this approach reduces overall optimisation cost on average by around a factor of three compared to other commonly used approaches, through evaluation on three challenging materials design problems." @default.
- W4313396405 created "2023-01-06" @default.
- W4313396405 creator A5019054446 @default.
- W4313396405 creator A5055612749 @default.
- W4313396405 creator A5064869045 @default.
- W4313396405 creator A5076567719 @default.
- W4313396405 creator A5084050064 @default.
- W4313396405 date "2022-12-19" @default.
- W4313396405 modified "2023-09-26" @default.
- W4313396405 title "A multi-fidelity machine learning approach to high throughput materials screening" @default.
- W4313396405 cites W1970651561 @default.
- W4313396405 cites W1971044734 @default.
- W4313396405 cites W1976355201 @default.
- W4313396405 cites W1981368803 @default.
- W4313396405 cites W1988091937 @default.
- W4313396405 cites W1993077801 @default.
- W4313396405 cites W2000957843 @default.
- W4313396405 cites W2006787354 @default.
- W4313396405 cites W2023390323 @default.
- W4313396405 cites W2029413789 @default.
- W4313396405 cites W2030687437 @default.
- W4313396405 cites W2046412723 @default.
- W4313396405 cites W2047951832 @default.
- W4313396405 cites W2052994868 @default.
- W4313396405 cites W2074497204 @default.
- W4313396405 cites W2080503082 @default.
- W4313396405 cites W2085336624 @default.
- W4313396405 cites W2086957099 @default.
- W4313396405 cites W2121120934 @default.
- W4313396405 cites W2131686485 @default.
- W4313396405 cites W2143061492 @default.
- W4313396405 cites W2143981217 @default.
- W4313396405 cites W2150697053 @default.
- W4313396405 cites W2200017991 @default.
- W4313396405 cites W2527540728 @default.
- W4313396405 cites W2541404351 @default.
- W4313396405 cites W2781953303 @default.
- W4313396405 cites W2781973163 @default.
- W4313396405 cites W2797576574 @default.
- W4313396405 cites W2901292178 @default.
- W4313396405 cites W2919958648 @default.
- W4313396405 cites W2933565232 @default.
- W4313396405 cites W2940163937 @default.
- W4313396405 cites W2944148756 @default.
- W4313396405 cites W2963485997 @default.
- W4313396405 cites W2978032524 @default.
- W4313396405 cites W3004227146 @default.
- W4313396405 cites W3018864785 @default.
- W4313396405 cites W3047312460 @default.
- W4313396405 cites W3121984752 @default.
- W4313396405 cites W3144544123 @default.
- W4313396405 cites W3188464137 @default.
- W4313396405 cites W4211049957 @default.
- W4313396405 cites W4225000412 @default.
- W4313396405 cites W4286610438 @default.
- W4313396405 doi "https://doi.org/10.1038/s41524-022-00947-9" @default.
- W4313396405 hasPublicationYear "2022" @default.
- W4313396405 type Work @default.
- W4313396405 citedByCount "3" @default.
- W4313396405 countsByYear W43133964052023 @default.
- W4313396405 crossrefType "journal-article" @default.
- W4313396405 hasAuthorship W4313396405A5019054446 @default.
- W4313396405 hasAuthorship W4313396405A5055612749 @default.
- W4313396405 hasAuthorship W4313396405A5064869045 @default.
- W4313396405 hasAuthorship W4313396405A5076567719 @default.
- W4313396405 hasAuthorship W4313396405A5084050064 @default.
- W4313396405 hasBestOaLocation W43133964051 @default.
- W4313396405 hasConcept C111919701 @default.
- W4313396405 hasConcept C113775141 @default.
- W4313396405 hasConcept C119599485 @default.
- W4313396405 hasConcept C119857082 @default.
- W4313396405 hasConcept C121332964 @default.
- W4313396405 hasConcept C127413603 @default.
- W4313396405 hasConcept C141353440 @default.
- W4313396405 hasConcept C154945302 @default.
- W4313396405 hasConcept C157764524 @default.
- W4313396405 hasConcept C163716315 @default.
- W4313396405 hasConcept C199360897 @default.
- W4313396405 hasConcept C26517878 @default.
- W4313396405 hasConcept C2776459999 @default.
- W4313396405 hasConcept C2781020372 @default.
- W4313396405 hasConcept C2781039887 @default.
- W4313396405 hasConcept C38652104 @default.
- W4313396405 hasConcept C41008148 @default.
- W4313396405 hasConcept C555944384 @default.
- W4313396405 hasConcept C61326573 @default.
- W4313396405 hasConcept C62520636 @default.
- W4313396405 hasConcept C66024118 @default.
- W4313396405 hasConcept C76155785 @default.
- W4313396405 hasConcept C98045186 @default.
- W4313396405 hasConceptScore W4313396405C111919701 @default.
- W4313396405 hasConceptScore W4313396405C113775141 @default.
- W4313396405 hasConceptScore W4313396405C119599485 @default.
- W4313396405 hasConceptScore W4313396405C119857082 @default.
- W4313396405 hasConceptScore W4313396405C121332964 @default.
- W4313396405 hasConceptScore W4313396405C127413603 @default.
- W4313396405 hasConceptScore W4313396405C141353440 @default.
- W4313396405 hasConceptScore W4313396405C154945302 @default.
- W4313396405 hasConceptScore W4313396405C157764524 @default.
- W4313396405 hasConceptScore W4313396405C163716315 @default.