Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313396581> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4313396581 abstract "Improving the cooling efficiency of a data center becomes important due to the cooling power reaches one-half of total power budget in operating the data center. The major cause of inefficient cooling is the poor airflow management resulting in cold air bypass and hot air recirculation. Basically the architecture of airflow management includes the separation of cold aisle and hot aisle and raised floor with perforated tile. The cold air is generated by the Computer Room Air Conditioning (CRAC) unit and is delivered to the server rack through the perforated floor. To avoid hot air recirculation, an active tile is used to enhance the airflow in a specific location where the flow resistance is larger than the others. The priority of the airflow control is to eliminate hot spot owing to the hot air recirculation such that the control strategy is conservative. Recently many studies pay attention to real-time temperature prediction by utilizing airflow model to improve the control performance of the airflow. However the derivation of airflow model suffers the difficulty from the airflow measurement. Therefore this research aims at the development of deep learning model for predicting the inlet temperature distributions in real time for use in control strategies in order to improve energy usage dynamically. A rack tested system was established for the validation of the temperature prediction by using deep learning. In this paper we define the workload schedule of the rack to collect the training data and the GRU recurrent neural network model is used to develop the temperature prediction model. The experimental results show that the prediction model can predict the inlet temperature at a root mean square error of 0.29°C." @default.
- W4313396581 created "2023-01-06" @default.
- W4313396581 creator A5006013228 @default.
- W4313396581 creator A5030714502 @default.
- W4313396581 creator A5033895967 @default.
- W4313396581 creator A5058401340 @default.
- W4313396581 date "2022-11-18" @default.
- W4313396581 modified "2023-09-28" @default.
- W4313396581 title "Rack Inlet Temperature Prediction Based on Deep Learning" @default.
- W4313396581 cites W1966661666 @default.
- W4313396581 cites W2000980089 @default.
- W4313396581 cites W2030980402 @default.
- W4313396581 cites W2074644915 @default.
- W4313396581 cites W2100842489 @default.
- W4313396581 cites W2166180171 @default.
- W4313396581 cites W2168536124 @default.
- W4313396581 cites W2173223975 @default.
- W4313396581 cites W2327388626 @default.
- W4313396581 cites W2475657130 @default.
- W4313396581 cites W2502122584 @default.
- W4313396581 cites W2888566763 @default.
- W4313396581 cites W3136117146 @default.
- W4313396581 doi "https://doi.org/10.1109/icmt56556.2022.9997747" @default.
- W4313396581 hasPublicationYear "2022" @default.
- W4313396581 type Work @default.
- W4313396581 citedByCount "0" @default.
- W4313396581 crossrefType "proceedings-article" @default.
- W4313396581 hasAuthorship W4313396581A5006013228 @default.
- W4313396581 hasAuthorship W4313396581A5030714502 @default.
- W4313396581 hasAuthorship W4313396581A5033895967 @default.
- W4313396581 hasAuthorship W4313396581A5058401340 @default.
- W4313396581 hasConcept C103742991 @default.
- W4313396581 hasConcept C111919701 @default.
- W4313396581 hasConcept C116067010 @default.
- W4313396581 hasConcept C127413603 @default.
- W4313396581 hasConcept C153740404 @default.
- W4313396581 hasConcept C171146098 @default.
- W4313396581 hasConcept C199104240 @default.
- W4313396581 hasConcept C2776843527 @default.
- W4313396581 hasConcept C2778203192 @default.
- W4313396581 hasConcept C39432304 @default.
- W4313396581 hasConcept C41008148 @default.
- W4313396581 hasConcept C44154836 @default.
- W4313396581 hasConcept C536315585 @default.
- W4313396581 hasConcept C66938386 @default.
- W4313396581 hasConcept C78519656 @default.
- W4313396581 hasConceptScore W4313396581C103742991 @default.
- W4313396581 hasConceptScore W4313396581C111919701 @default.
- W4313396581 hasConceptScore W4313396581C116067010 @default.
- W4313396581 hasConceptScore W4313396581C127413603 @default.
- W4313396581 hasConceptScore W4313396581C153740404 @default.
- W4313396581 hasConceptScore W4313396581C171146098 @default.
- W4313396581 hasConceptScore W4313396581C199104240 @default.
- W4313396581 hasConceptScore W4313396581C2776843527 @default.
- W4313396581 hasConceptScore W4313396581C2778203192 @default.
- W4313396581 hasConceptScore W4313396581C39432304 @default.
- W4313396581 hasConceptScore W4313396581C41008148 @default.
- W4313396581 hasConceptScore W4313396581C44154836 @default.
- W4313396581 hasConceptScore W4313396581C536315585 @default.
- W4313396581 hasConceptScore W4313396581C66938386 @default.
- W4313396581 hasConceptScore W4313396581C78519656 @default.
- W4313396581 hasLocation W43133965811 @default.
- W4313396581 hasOpenAccess W4313396581 @default.
- W4313396581 hasPrimaryLocation W43133965811 @default.
- W4313396581 hasRelatedWork W1993337401 @default.
- W4313396581 hasRelatedWork W2088970880 @default.
- W4313396581 hasRelatedWork W2166180171 @default.
- W4313396581 hasRelatedWork W2545825144 @default.
- W4313396581 hasRelatedWork W2739806346 @default.
- W4313396581 hasRelatedWork W2910005506 @default.
- W4313396581 hasRelatedWork W3129263460 @default.
- W4313396581 hasRelatedWork W3190741435 @default.
- W4313396581 hasRelatedWork W2086196145 @default.
- W4313396581 hasRelatedWork W2498791987 @default.
- W4313396581 isParatext "false" @default.
- W4313396581 isRetracted "false" @default.
- W4313396581 workType "article" @default.