Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313396732> ?p ?o ?g. }
- W4313396732 endingPage "20" @default.
- W4313396732 startingPage "6" @default.
- W4313396732 abstract "In aquaculture ponds, wireless sensor networks (WSNs) with uneven temperature distribution and low collection efficiency may lead to poor monitoring effects. To improve the performance of temperature monitoring, a high-precision fusion strategy for a hierarchical WSN is proposed. In the bottom layer, the temperature data collected by the sensors are preprocessed by an improved unscented Kalman filter. In the middle layer, each cluster head sensor, as a local fusion center, is used to fuse the data collected from the sensors by a sequential analysis and fast inverse covariance intersection (ICI) algorithm. In the top layer, a global fusion center is utilized to fuse the temperature data from the middle layer to reflect the global temperature by an improved seagull algorithm to optimize the extreme learning machine (ELM) algorithm. Through calculation and simulation, the results show that the fusion strategy not only reduces external interference but also improves the accuracy of global optimal temperature state estimation while ensuring the stability and accuracy of data fusion." @default.
- W4313396732 created "2023-01-06" @default.
- W4313396732 creator A5015575767 @default.
- W4313396732 creator A5045313476 @default.
- W4313396732 creator A5060593229 @default.
- W4313396732 date "2023-01-01" @default.
- W4313396732 modified "2023-09-27" @default.
- W4313396732 title "Data Fusion Based on Temperature Monitoring of Aquaculture Ponds With Wireless Sensor Networks" @default.
- W4313396732 cites W1912150046 @default.
- W4313396732 cites W1999356125 @default.
- W4313396732 cites W2049392884 @default.
- W4313396732 cites W2067786164 @default.
- W4313396732 cites W2094918307 @default.
- W4313396732 cites W2118939459 @default.
- W4313396732 cites W2167582408 @default.
- W4313396732 cites W2273699447 @default.
- W4313396732 cites W2276751812 @default.
- W4313396732 cites W2338648705 @default.
- W4313396732 cites W2411420527 @default.
- W4313396732 cites W2415839891 @default.
- W4313396732 cites W2593819095 @default.
- W4313396732 cites W2618548677 @default.
- W4313396732 cites W2666610904 @default.
- W4313396732 cites W2736637895 @default.
- W4313396732 cites W2768542258 @default.
- W4313396732 cites W2788813591 @default.
- W4313396732 cites W2789198105 @default.
- W4313396732 cites W2789272196 @default.
- W4313396732 cites W2793409604 @default.
- W4313396732 cites W2794543231 @default.
- W4313396732 cites W2802090116 @default.
- W4313396732 cites W2885097378 @default.
- W4313396732 cites W2902421512 @default.
- W4313396732 cites W2906448669 @default.
- W4313396732 cites W2909334078 @default.
- W4313396732 cites W2937305999 @default.
- W4313396732 cites W2944600254 @default.
- W4313396732 cites W2951450390 @default.
- W4313396732 cites W2972620860 @default.
- W4313396732 cites W2982062539 @default.
- W4313396732 cites W2999025912 @default.
- W4313396732 cites W2999263364 @default.
- W4313396732 cites W3000211599 @default.
- W4313396732 cites W3009498534 @default.
- W4313396732 cites W3010850496 @default.
- W4313396732 cites W3013304730 @default.
- W4313396732 cites W3026706456 @default.
- W4313396732 cites W3030628169 @default.
- W4313396732 cites W3048494381 @default.
- W4313396732 cites W3092043545 @default.
- W4313396732 cites W3093308276 @default.
- W4313396732 cites W3103585945 @default.
- W4313396732 cites W3120302457 @default.
- W4313396732 cites W3120412245 @default.
- W4313396732 cites W3130312653 @default.
- W4313396732 cites W3132373333 @default.
- W4313396732 cites W3148018505 @default.
- W4313396732 cites W3163470680 @default.
- W4313396732 cites W3166902221 @default.
- W4313396732 cites W3191127355 @default.
- W4313396732 cites W3196722410 @default.
- W4313396732 cites W3199296168 @default.
- W4313396732 cites W3209394392 @default.
- W4313396732 cites W4200418615 @default.
- W4313396732 cites W4221121680 @default.
- W4313396732 cites W4225569955 @default.
- W4313396732 doi "https://doi.org/10.1109/jsen.2022.3222510" @default.
- W4313396732 hasPublicationYear "2023" @default.
- W4313396732 type Work @default.
- W4313396732 citedByCount "3" @default.
- W4313396732 countsByYear W43133967322023 @default.
- W4313396732 crossrefType "journal-article" @default.
- W4313396732 hasAuthorship W4313396732A5015575767 @default.
- W4313396732 hasAuthorship W4313396732A5045313476 @default.
- W4313396732 hasAuthorship W4313396732A5060593229 @default.
- W4313396732 hasBestOaLocation W43133967321 @default.
- W4313396732 hasConcept C11413529 @default.
- W4313396732 hasConcept C119599485 @default.
- W4313396732 hasConcept C121332964 @default.
- W4313396732 hasConcept C127162648 @default.
- W4313396732 hasConcept C127413603 @default.
- W4313396732 hasConcept C138885662 @default.
- W4313396732 hasConcept C141353440 @default.
- W4313396732 hasConcept C146978453 @default.
- W4313396732 hasConcept C149946192 @default.
- W4313396732 hasConcept C154945302 @default.
- W4313396732 hasConcept C157286648 @default.
- W4313396732 hasConcept C158525013 @default.
- W4313396732 hasConcept C206833254 @default.
- W4313396732 hasConcept C24590314 @default.
- W4313396732 hasConcept C2780150128 @default.
- W4313396732 hasConcept C2781234732 @default.
- W4313396732 hasConcept C31258907 @default.
- W4313396732 hasConcept C32022120 @default.
- W4313396732 hasConcept C33954974 @default.
- W4313396732 hasConcept C41008148 @default.
- W4313396732 hasConcept C41895202 @default.
- W4313396732 hasConcept C50644808 @default.