Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313396905> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4313396905 abstract "Autonomous Vehicles (AVs) have become a popular research topic in recent years due to their ability to improve road safety by reducing traffic accidents and human injuries. Vehicle control is the most significant part of autonomous driving, which adjusts the steering angle and velocity of AVs during driving. Recently, vehicle control has seen consequential progress using effective Artificial Intelligence (AI), especially Deep Learning (DL) techniques. Recent works have been limited to using Reinforcement Learning (RL) techniques to control AV to follow only its path without taking into consideration other road users, especially the pedestrians. In this paper, we propose a Novel Reinforcement Learning based model using Deep-Q Networks to control the AV in a complex scenario involving vehicles and pedestrians. AV learns the policy of several actions in order to reach its destination without accidents with other road participants. Our approach in tested and validated using the CARLA simulator. Our results show that the proposed approach achieves better performances in terms of average reward, success rate, and collision rate over time." @default.
- W4313396905 created "2023-01-06" @default.
- W4313396905 creator A5002241274 @default.
- W4313396905 creator A5021799532 @default.
- W4313396905 creator A5062366684 @default.
- W4313396905 creator A5070161930 @default.
- W4313396905 date "2022-11-20" @default.
- W4313396905 modified "2023-10-16" @default.
- W4313396905 title "DQN-based Reinforcement Learning for Vehicle Control of Autonomous Vehicles Interacting With Pedestrians" @default.
- W4313396905 cites W2767609378 @default.
- W4313396905 cites W2904498880 @default.
- W4313396905 cites W2911486422 @default.
- W4313396905 cites W2947075657 @default.
- W4313396905 cites W2973127502 @default.
- W4313396905 cites W2988904175 @default.
- W4313396905 cites W3019688365 @default.
- W4313396905 cites W3023076313 @default.
- W4313396905 cites W3039762817 @default.
- W4313396905 cites W3194366730 @default.
- W4313396905 cites W4205141817 @default.
- W4313396905 cites W4205373550 @default.
- W4313396905 cites W4220982348 @default.
- W4313396905 cites W4226286144 @default.
- W4313396905 cites W4285210411 @default.
- W4313396905 cites W3014823633 @default.
- W4313396905 doi "https://doi.org/10.1109/3ict56508.2022.9990801" @default.
- W4313396905 hasPublicationYear "2022" @default.
- W4313396905 type Work @default.
- W4313396905 citedByCount "1" @default.
- W4313396905 countsByYear W43133969052023 @default.
- W4313396905 crossrefType "proceedings-article" @default.
- W4313396905 hasAuthorship W4313396905A5002241274 @default.
- W4313396905 hasAuthorship W4313396905A5021799532 @default.
- W4313396905 hasAuthorship W4313396905A5062366684 @default.
- W4313396905 hasAuthorship W4313396905A5070161930 @default.
- W4313396905 hasConcept C121704057 @default.
- W4313396905 hasConcept C127413603 @default.
- W4313396905 hasConcept C154945302 @default.
- W4313396905 hasConcept C199360897 @default.
- W4313396905 hasConcept C22212356 @default.
- W4313396905 hasConcept C2775924081 @default.
- W4313396905 hasConcept C2777113093 @default.
- W4313396905 hasConcept C2777735758 @default.
- W4313396905 hasConcept C2780864053 @default.
- W4313396905 hasConcept C38652104 @default.
- W4313396905 hasConcept C41008148 @default.
- W4313396905 hasConcept C44154836 @default.
- W4313396905 hasConcept C97541855 @default.
- W4313396905 hasConceptScore W4313396905C121704057 @default.
- W4313396905 hasConceptScore W4313396905C127413603 @default.
- W4313396905 hasConceptScore W4313396905C154945302 @default.
- W4313396905 hasConceptScore W4313396905C199360897 @default.
- W4313396905 hasConceptScore W4313396905C22212356 @default.
- W4313396905 hasConceptScore W4313396905C2775924081 @default.
- W4313396905 hasConceptScore W4313396905C2777113093 @default.
- W4313396905 hasConceptScore W4313396905C2777735758 @default.
- W4313396905 hasConceptScore W4313396905C2780864053 @default.
- W4313396905 hasConceptScore W4313396905C38652104 @default.
- W4313396905 hasConceptScore W4313396905C41008148 @default.
- W4313396905 hasConceptScore W4313396905C44154836 @default.
- W4313396905 hasConceptScore W4313396905C97541855 @default.
- W4313396905 hasLocation W43133969051 @default.
- W4313396905 hasOpenAccess W4313396905 @default.
- W4313396905 hasPrimaryLocation W43133969051 @default.
- W4313396905 hasRelatedWork W1972115193 @default.
- W4313396905 hasRelatedWork W2148914525 @default.
- W4313396905 hasRelatedWork W2158539027 @default.
- W4313396905 hasRelatedWork W2268849259 @default.
- W4313396905 hasRelatedWork W246720332 @default.
- W4313396905 hasRelatedWork W2897153482 @default.
- W4313396905 hasRelatedWork W2972504315 @default.
- W4313396905 hasRelatedWork W3199907814 @default.
- W4313396905 hasRelatedWork W3212504492 @default.
- W4313396905 hasRelatedWork W4281614515 @default.
- W4313396905 isParatext "false" @default.
- W4313396905 isRetracted "false" @default.
- W4313396905 workType "article" @default.