Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313397047> ?p ?o ?g. }
- W4313397047 endingPage "1321" @default.
- W4313397047 startingPage "1307" @default.
- W4313397047 abstract "Abstract Point cloud is an important expression form of three‐dimensional (3D) data. It has enjoyed continuous development and attracted increasing attention due to its wide applications in many areas, such as artificial intelligence, deep learning, autonomous driving and tracking. Recently, there is a large number of end‐to‐end point cloud‐based deep learning methods being proposed which are successful in the 3D domain. In order to better use point cloud data for analysis and to explore future research directions, this paper presents a comprehensive review of existing methods and publicly available datasets, with a focus on the methods and research status of using point cloud data as direct input. The background of point cloud is first introduced, including data acquisition methods, basic concepts, and challenges. Following that, the deep learning methods based on point cloud data are investigated and analysed according to classification, detection and tracking, and segmentation. Furthermore, the existing public datasets and evaluation metrics are introduced. Finally, promising research directions are proposed in conjunction with existing methods." @default.
- W4313397047 created "2023-01-06" @default.
- W4313397047 creator A5003753200 @default.
- W4313397047 creator A5010098009 @default.
- W4313397047 creator A5046280845 @default.
- W4313397047 creator A5088355263 @default.
- W4313397047 date "2022-12-31" @default.
- W4313397047 modified "2023-10-14" @default.
- W4313397047 title "A survey on end‐to‐end point cloud learning" @default.
- W4313397047 cites W1644641054 @default.
- W4313397047 cites W1923184257 @default.
- W4313397047 cites W2144380653 @default.
- W4313397047 cites W2150066425 @default.
- W4313397047 cites W2155806937 @default.
- W4313397047 cites W2431874326 @default.
- W4313397047 cites W2460657278 @default.
- W4313397047 cites W2555618208 @default.
- W4313397047 cites W2594519801 @default.
- W4313397047 cites W2944006115 @default.
- W4313397047 cites W2955189650 @default.
- W4313397047 cites W2960986959 @default.
- W4313397047 cites W2962912109 @default.
- W4313397047 cites W2963037989 @default.
- W4313397047 cites W2963508807 @default.
- W4313397047 cites W2963706542 @default.
- W4313397047 cites W2964134613 @default.
- W4313397047 cites W2967740791 @default.
- W4313397047 cites W2970666303 @default.
- W4313397047 cites W2979912832 @default.
- W4313397047 cites W2981440248 @default.
- W4313397047 cites W2981856165 @default.
- W4313397047 cites W2990957401 @default.
- W4313397047 cites W2991216808 @default.
- W4313397047 cites W2997944991 @default.
- W4313397047 cites W3003437478 @default.
- W4313397047 cites W3011788244 @default.
- W4313397047 cites W3012015905 @default.
- W4313397047 cites W3015636086 @default.
- W4313397047 cites W3034314779 @default.
- W4313397047 cites W3034317268 @default.
- W4313397047 cites W3034364596 @default.
- W4313397047 cites W3034815155 @default.
- W4313397047 cites W3034986117 @default.
- W4313397047 cites W3035172746 @default.
- W4313397047 cites W3035363555 @default.
- W4313397047 cites W3035574168 @default.
- W4313397047 cites W3039448353 @default.
- W4313397047 cites W3116959466 @default.
- W4313397047 cites W3119197669 @default.
- W4313397047 cites W3136022415 @default.
- W4313397047 cites W3167095230 @default.
- W4313397047 cites W3168271366 @default.
- W4313397047 cites W3168718178 @default.
- W4313397047 cites W3176802407 @default.
- W4313397047 cites W3188283811 @default.
- W4313397047 cites W3202229469 @default.
- W4313397047 cites W3205005447 @default.
- W4313397047 cites W3209005318 @default.
- W4313397047 cites W4214526701 @default.
- W4313397047 cites W4214624153 @default.
- W4313397047 cites W4312270234 @default.
- W4313397047 cites W4312379726 @default.
- W4313397047 doi "https://doi.org/10.1049/ipr2.12729" @default.
- W4313397047 hasPublicationYear "2022" @default.
- W4313397047 type Work @default.
- W4313397047 citedByCount "1" @default.
- W4313397047 countsByYear W43133970472023 @default.
- W4313397047 crossrefType "journal-article" @default.
- W4313397047 hasAuthorship W4313397047A5003753200 @default.
- W4313397047 hasAuthorship W4313397047A5010098009 @default.
- W4313397047 hasAuthorship W4313397047A5046280845 @default.
- W4313397047 hasAuthorship W4313397047A5088355263 @default.
- W4313397047 hasBestOaLocation W43133970471 @default.
- W4313397047 hasConcept C108583219 @default.
- W4313397047 hasConcept C111919701 @default.
- W4313397047 hasConcept C119857082 @default.
- W4313397047 hasConcept C120665830 @default.
- W4313397047 hasConcept C121332964 @default.
- W4313397047 hasConcept C124101348 @default.
- W4313397047 hasConcept C131979681 @default.
- W4313397047 hasConcept C134306372 @default.
- W4313397047 hasConcept C154945302 @default.
- W4313397047 hasConcept C15744967 @default.
- W4313397047 hasConcept C192209626 @default.
- W4313397047 hasConcept C19417346 @default.
- W4313397047 hasConcept C2522767166 @default.
- W4313397047 hasConcept C2524010 @default.
- W4313397047 hasConcept C2775936607 @default.
- W4313397047 hasConcept C28719098 @default.
- W4313397047 hasConcept C33923547 @default.
- W4313397047 hasConcept C36503486 @default.
- W4313397047 hasConcept C41008148 @default.
- W4313397047 hasConcept C79974875 @default.
- W4313397047 hasConcept C89600930 @default.
- W4313397047 hasConceptScore W4313397047C108583219 @default.
- W4313397047 hasConceptScore W4313397047C111919701 @default.
- W4313397047 hasConceptScore W4313397047C119857082 @default.
- W4313397047 hasConceptScore W4313397047C120665830 @default.