Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313397514> ?p ?o ?g. }
- W4313397514 endingPage "107723" @default.
- W4313397514 startingPage "107723" @default.
- W4313397514 abstract "Detection of dynamic triggering of earthquakes combined with microseismic monitoring allows a better understanding on rock damage process in rock engineering, which involve local stress disturbances caused by far-field earthquakes. However, rapid and efficient detection of dynamic triggering of earthquakes remain clueless due to the lack of enough investigation. This study proposed a novel method for automatic detection of dynamic triggering of earthquakes based on convolutional neural networks (CNNs). Results show that the trained model is capable of detecting earthquakes with a high accuracy rate of 98.3%, which provided strong supports for the automatic detection of dynamic triggering of earthquakes. This method is applied to the Xiaojiang fault region, and dynamically triggered earthquakes were spotted for 31 of the 47 selected earthquakes. Our method achieves 94% recognition accuracy on the detection of dynamic triggering of earthquakes. This method offers a rapid and accurate framework to detect dynamic triggering of earthquakes and investigate the damage to rock engineering structures caused by far-field earthquakes based on microseismic monitoring." @default.
- W4313397514 created "2023-01-06" @default.
- W4313397514 creator A5016676861 @default.
- W4313397514 creator A5057864403 @default.
- W4313397514 creator A5069140647 @default.
- W4313397514 creator A5075655663 @default.
- W4313397514 date "2023-02-01" @default.
- W4313397514 modified "2023-10-16" @default.
- W4313397514 title "AI-powered automatic detection of dynamic triggering of earthquake based on microseismic monitoring" @default.
- W4313397514 cites W1586209620 @default.
- W4313397514 cites W1606053680 @default.
- W4313397514 cites W1660171692 @default.
- W4313397514 cites W1845703535 @default.
- W4313397514 cites W1964734807 @default.
- W4313397514 cites W1971693734 @default.
- W4313397514 cites W1982236703 @default.
- W4313397514 cites W2005653221 @default.
- W4313397514 cites W2008298461 @default.
- W4313397514 cites W2014579899 @default.
- W4313397514 cites W2027778135 @default.
- W4313397514 cites W2041774199 @default.
- W4313397514 cites W2042325560 @default.
- W4313397514 cites W2045080930 @default.
- W4313397514 cites W2069762949 @default.
- W4313397514 cites W2082090296 @default.
- W4313397514 cites W2086358914 @default.
- W4313397514 cites W2102919512 @default.
- W4313397514 cites W2112796928 @default.
- W4313397514 cites W2124740263 @default.
- W4313397514 cites W2131638456 @default.
- W4313397514 cites W2132547391 @default.
- W4313397514 cites W2140287156 @default.
- W4313397514 cites W2144411870 @default.
- W4313397514 cites W2152827797 @default.
- W4313397514 cites W2155849430 @default.
- W4313397514 cites W2164456799 @default.
- W4313397514 cites W2165846495 @default.
- W4313397514 cites W2166426012 @default.
- W4313397514 cites W2170004043 @default.
- W4313397514 cites W2171760806 @default.
- W4313397514 cites W2220510237 @default.
- W4313397514 cites W2264198078 @default.
- W4313397514 cites W2313396630 @default.
- W4313397514 cites W2508475963 @default.
- W4313397514 cites W2762410434 @default.
- W4313397514 cites W2766078494 @default.
- W4313397514 cites W2795269601 @default.
- W4313397514 cites W2798961812 @default.
- W4313397514 cites W2883142087 @default.
- W4313397514 cites W2884451927 @default.
- W4313397514 cites W2896948356 @default.
- W4313397514 cites W2899651173 @default.
- W4313397514 cites W2910087333 @default.
- W4313397514 cites W2912153344 @default.
- W4313397514 cites W2919115771 @default.
- W4313397514 cites W2921018385 @default.
- W4313397514 cites W2943227802 @default.
- W4313397514 cites W2950129262 @default.
- W4313397514 cites W2980397205 @default.
- W4313397514 cites W2982220345 @default.
- W4313397514 cites W2999283916 @default.
- W4313397514 cites W3000111918 @default.
- W4313397514 cites W3022539899 @default.
- W4313397514 cites W3033584925 @default.
- W4313397514 cites W3047806855 @default.
- W4313397514 cites W3047908354 @default.
- W4313397514 cites W3093680320 @default.
- W4313397514 cites W3096033615 @default.
- W4313397514 cites W3128417835 @default.
- W4313397514 cites W3139115304 @default.
- W4313397514 cites W4200457028 @default.
- W4313397514 cites W4205942157 @default.
- W4313397514 doi "https://doi.org/10.1016/j.soildyn.2022.107723" @default.
- W4313397514 hasPublicationYear "2023" @default.
- W4313397514 type Work @default.
- W4313397514 citedByCount "0" @default.
- W4313397514 crossrefType "journal-article" @default.
- W4313397514 hasAuthorship W4313397514A5016676861 @default.
- W4313397514 hasAuthorship W4313397514A5057864403 @default.
- W4313397514 hasAuthorship W4313397514A5069140647 @default.
- W4313397514 hasAuthorship W4313397514A5075655663 @default.
- W4313397514 hasConcept C111919701 @default.
- W4313397514 hasConcept C127313418 @default.
- W4313397514 hasConcept C154945302 @default.
- W4313397514 hasConcept C165205528 @default.
- W4313397514 hasConcept C202444582 @default.
- W4313397514 hasConcept C33923547 @default.
- W4313397514 hasConcept C41008148 @default.
- W4313397514 hasConcept C7266685 @default.
- W4313397514 hasConcept C81363708 @default.
- W4313397514 hasConcept C90626213 @default.
- W4313397514 hasConcept C9652623 @default.
- W4313397514 hasConcept C98045186 @default.
- W4313397514 hasConceptScore W4313397514C111919701 @default.
- W4313397514 hasConceptScore W4313397514C127313418 @default.
- W4313397514 hasConceptScore W4313397514C154945302 @default.
- W4313397514 hasConceptScore W4313397514C165205528 @default.
- W4313397514 hasConceptScore W4313397514C202444582 @default.