Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313397630> ?p ?o ?g. }
- W4313397630 endingPage "83" @default.
- W4313397630 startingPage "69" @default.
- W4313397630 abstract "The semi-nonnegative matrix factorization (Semi-NMF) is a promising soft K-means clustering technique. Deep Semi-NMF, which stacks one-layer Semi-NMF into multi-layer, is able to learn the hierarchical projections and can obtain the deep hidden representations according to the unknown attributes of the given data. On the other hand, the inherent structure of the each data cluster can be described by the distribution of the intraclass data. Then one hopes to learn the new deep hidden representations which can preserve the intrinsic structures embedded in the original data space perfectly. Here seamlessly integrating the benefits of the Deep Semi-NMF and the distribution preserving strategy, we propose a novel distribution preserving-based deep semi-nonnegative matrix factorization method (DPNMF) to achieve this goal. In DPNMF, by maintaining the consistency of two distributions that can approximate the manifold structures, we can seek the deep hidden features which reveal the original intrinsic structures. As a result, the manifold structures in the raw data are well preserved in the new feature space. We also devise an adaptive projected Barzilai-Borwein method to optimize the proposed constrained objective function efficiently. The experimental results on the several real-world datasets show that the proposed DPNMF can achieve advantageous clustering performance in terms of accuracy (ACC), normalized mutual information (NMI), and adjusted rand index (ARI)." @default.
- W4313397630 created "2023-01-06" @default.
- W4313397630 creator A5010158256 @default.
- W4313397630 creator A5017141085 @default.
- W4313397630 creator A5048447987 @default.
- W4313397630 creator A5054631829 @default.
- W4313397630 creator A5059839991 @default.
- W4313397630 creator A5085140523 @default.
- W4313397630 date "2023-03-01" @default.
- W4313397630 modified "2023-10-16" @default.
- W4313397630 title "Distribution preserving-based deep semi-NMF for data representation" @default.
- W4313397630 cites W1902027874 @default.
- W4313397630 cites W1973734200 @default.
- W4313397630 cites W2014421268 @default.
- W4313397630 cites W2016412486 @default.
- W4313397630 cites W2022686119 @default.
- W4313397630 cites W2031127394 @default.
- W4313397630 cites W2067191022 @default.
- W4313397630 cites W2076605490 @default.
- W4313397630 cites W2099629511 @default.
- W4313397630 cites W2100437550 @default.
- W4313397630 cites W2100495367 @default.
- W4313397630 cites W2108119513 @default.
- W4313397630 cites W2108433027 @default.
- W4313397630 cites W2110096996 @default.
- W4313397630 cites W2113054345 @default.
- W4313397630 cites W2118075667 @default.
- W4313397630 cites W2144719328 @default.
- W4313397630 cites W2155151262 @default.
- W4313397630 cites W2162155934 @default.
- W4313397630 cites W2168103112 @default.
- W4313397630 cites W2169658215 @default.
- W4313397630 cites W2571268788 @default.
- W4313397630 cites W2607323999 @default.
- W4313397630 cites W2751384800 @default.
- W4313397630 cites W2804122900 @default.
- W4313397630 cites W2805046565 @default.
- W4313397630 cites W2951270686 @default.
- W4313397630 cites W2995857167 @default.
- W4313397630 cites W3008534764 @default.
- W4313397630 cites W3014247029 @default.
- W4313397630 cites W3022399687 @default.
- W4313397630 cites W3049659830 @default.
- W4313397630 cites W3092439306 @default.
- W4313397630 cites W3110894796 @default.
- W4313397630 cites W3128193561 @default.
- W4313397630 cites W3134904731 @default.
- W4313397630 cites W3136737181 @default.
- W4313397630 cites W3181079839 @default.
- W4313397630 cites W3207119656 @default.
- W4313397630 cites W3207618012 @default.
- W4313397630 cites W3216302575 @default.
- W4313397630 cites W4206111210 @default.
- W4313397630 cites W4230626474 @default.
- W4313397630 doi "https://doi.org/10.1016/j.neucom.2022.12.046" @default.
- W4313397630 hasPublicationYear "2023" @default.
- W4313397630 type Work @default.
- W4313397630 citedByCount "0" @default.
- W4313397630 crossrefType "journal-article" @default.
- W4313397630 hasAuthorship W4313397630A5010158256 @default.
- W4313397630 hasAuthorship W4313397630A5017141085 @default.
- W4313397630 hasAuthorship W4313397630A5048447987 @default.
- W4313397630 hasAuthorship W4313397630A5054631829 @default.
- W4313397630 hasAuthorship W4313397630A5059839991 @default.
- W4313397630 hasAuthorship W4313397630A5085140523 @default.
- W4313397630 hasConcept C108583219 @default.
- W4313397630 hasConcept C111442797 @default.
- W4313397630 hasConcept C121332964 @default.
- W4313397630 hasConcept C124101348 @default.
- W4313397630 hasConcept C138885662 @default.
- W4313397630 hasConcept C152671427 @default.
- W4313397630 hasConcept C153180895 @default.
- W4313397630 hasConcept C154945302 @default.
- W4313397630 hasConcept C158693339 @default.
- W4313397630 hasConcept C17744445 @default.
- W4313397630 hasConcept C184509293 @default.
- W4313397630 hasConcept C199539241 @default.
- W4313397630 hasConcept C2776359362 @default.
- W4313397630 hasConcept C2776401178 @default.
- W4313397630 hasConcept C33923547 @default.
- W4313397630 hasConcept C41008148 @default.
- W4313397630 hasConcept C41895202 @default.
- W4313397630 hasConcept C42355184 @default.
- W4313397630 hasConcept C62520636 @default.
- W4313397630 hasConcept C73555534 @default.
- W4313397630 hasConcept C83665646 @default.
- W4313397630 hasConcept C94625758 @default.
- W4313397630 hasConceptScore W4313397630C108583219 @default.
- W4313397630 hasConceptScore W4313397630C111442797 @default.
- W4313397630 hasConceptScore W4313397630C121332964 @default.
- W4313397630 hasConceptScore W4313397630C124101348 @default.
- W4313397630 hasConceptScore W4313397630C138885662 @default.
- W4313397630 hasConceptScore W4313397630C152671427 @default.
- W4313397630 hasConceptScore W4313397630C153180895 @default.
- W4313397630 hasConceptScore W4313397630C154945302 @default.
- W4313397630 hasConceptScore W4313397630C158693339 @default.
- W4313397630 hasConceptScore W4313397630C17744445 @default.
- W4313397630 hasConceptScore W4313397630C184509293 @default.